Metformin is a hypoglycemic agent used clinically in the treatment of type 2 diabetics. In addition, metformin is being investigated as a potential geroprotector. Here, we investigated the effects of metformin silkworm lifespan and the underlying molecular pathways involved. We found that metformin prolonged the lifespan of the male silkworm without reducing body weight, which suggests metformin can increase lifespan through remodeling of the animal's energy distribution strategy. Consistent with that idea, metformin reduced silk production and thus the energy devoted to that process. Metformin also increased fasting tolerance and levels of the antioxidant glutathione, and also activated an adenosine monophosphate-activated protein kinase-p53-forkhead box class O signaling pathway in silkworm. These results suggest that activity in this pathway may contribute to metformin-induced lifespan extension in silkworm by increasing stress resistance and antioxidative capacity while reducing energy output for silk product. The results also show that the silkworm is a potential useful animal model for evaluating the effects of small molecules with potential clinical utility.