Tactile perception results from the interplay of peripheral and central mechanisms for detection and sensation of objects and the discrimination and evaluation of their size, shapes, and surface characteristics. For different tasks, we investigated this interaction between more bottom-up stimulus-driven and rather top-down attention-related and cognitive processes in tactile perception. Moreover, we were interested in effects of age and tactile experiences on this interaction. 299 right-handed women participated in our study and were divided into five age groups: 18-25 years (N = 77), 30-45 years (N = 76), 50-65 years (N = 62), 66-75 years (N = 63) and older than 75 years (N = 21). They filled a questionnaire on tactile experiences and rated their skin as either very dry, dry, normal, or oily. Further they performed three tactile tests with the left and right index fingers. Sensitivity for touch stimuli was assessed with von Frey filaments. A sand paper test was used to examine texture discrimination performance. Spatial discrimination was investigated with a tactile Landolt ring test. Multivariate ANOVA confirmed a linear decline in tactile perceptual skills with age (F(3, 279) = 76.740; p < .000; pEta2 = 0.452), starting in early adulthood. Largest age effects were found for the Landolt ring test and smallest age effects for the Sand paper test, indicating different aging slopes. Tactile experiences had a positive effect on tactile performance (F (3,279) = 4.450; p = .005; pEta2 = 0.046) and univariate ANOVA confirmed this effect for the sand paper and the Landolt ring test, but not for the von Frey test. Using structural equation modelling, we confirmed two dimensions of tactile performance; one related to more peripheral or early sensory cortical (bottom-up) processes (i.e., sensitivity) and one more associated with cognitive or evaluative (top-down) processes (i.e., perception). Interestingly, the top-down processes were stronger influenced by age than bottom-up ones, suggesting that age-related deficits in tactile performance are mainly caused by a decline of central perceptive-evaluative capacities rather than by reduced sensitivity.