Our previous study suggested that mitochondrial haplogroup F (mtDNA F) was a longevity-associated biomarker, but the effect of mitochondrial haplogroup F on longevity individuals with metabolic syndrome (MetS) was not clear. Thus we explored the association between mtDNA F and MetS among longevity and control population in Guangxi Zhuang Autonomous Region, China. A total of 793 individuals consisting of 307 long-lived participants and 486 local healthy controls were involved in this study. Genotypes of mtDNA F were amplified by polymerase chain reaction and Sanger sequenced. MetS was defined according to the revised National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATPIII ) criteria. The prevalence of MetS in longevity group (28.0%) was higher than that (18.5%) in control group (P=0.002). Through the case-control stratify analysis, the prevalence of MetS in mtDNA F+ longevity individuals (29.8%) was 4.6 fold higher than that (5.3%) in local control group (P<0.001). However, after further longevity-only analysis, no association between MetS and mtDNA F+ in longevity group was observed (P=0.167). Following same analysis of two variables in control group, we found that the prevalence of MetS in mtDNA F- (95.8%) was higher than that in mtDNA F+ (5.3%); conversely, the prevalence of non-metabolic syndrome (NMetS) in mtDNA F+ (94.7%) was markedly higher than that in mtDNA F- (4.2%) (P<0.001). We demonstrated that mtDNA F+ , as a molecuar biomarker, might not only confer beneficial effect to resistance against MetS but also function as a positive factor for long-life span among the population in Guangxi Zhuang Autonomous Region, China.