Xenopus laevis oocytes have been extensively used as a heterologous expression system for the study of ion channels. While used successfully worldwide as tool for expressing and characterizing ion channels from a wide range of species, the limited longevity of oocytes once removed from the animal can pose significant challenges. In this study, we evaluate a simple and useful method that extends the longevity of Xenopus oocytes after removal from the animal and quantitatively assessed the reliability of the electrophysiological date obtained. The receptor used for this study was the UNC-49 receptor originally isolated from the sheep parasite, Haemonchus contortus. Overall, we found that immediate storage of the ovary in supplemented ND96 storage buffer at 4 °C could extend their use for up to 17 days with almost 80% providing reliable electrophysiological data. This means that a single extraction can provide at least 3 weeks of experiments. In addition, we examined 24-day-old oocytes (week 4) extracted from a single frog and also obtained reliable data using the same approach. However, 50% of these oocytes were usable for full dose-response experiments. Overall, we did find that this method has the potential to significantly extend the use of single oocyte extractions for two-electrode voltage clamp electrophysiology.