Both feed efficiency and sow production are economically important traits in pig breeding. One challenge in a maternal line such as Norwegian Landrace is to breed for highly feed efficient fattening pigs and, at the same time, produce sows with high daily feed intake to maintain their BCS in multiple parities. The aim of this study was to estimate genetic correlations among novel feed efficiency measurements on Norwegian Landrace boars and piglet production, stayability, and body condition in Norwegian Landrace sows. The feed efficiency measurements were lean meat and fat efficiency. These measurements were calculated using an extended residual feed intake model where total feed intake in the test period was the response variable and fat (kg) and lean meat (kg) on the carcass were included as both fixed and random regressions. The random regression coefficients that resulted from this model were breeding values, which represented the amount of feed used to produce an extra kilogram of lean meat and fat. The sow traits were stayability of the sow from first to second parity, BCS at weaning, litter weight at 3 wk, and total number of piglets born. All traits were recorded on first parity purebred Norwegian Landrace and analyzed using multivariate animal models. All genetic correlations between fat efficiency and sow traits were low. Significant genetic correlations were found only between fat efficiency and stayability (0.21 ± 0.11) and between fat efficiency and total litter weight at 3 wk (0.21 ± 0.10). The results indicate that selection for efficient deposition of fat could give poor stayability and lower litter weight at 3 wk in first parity sows. The genetic correlations between lean meat efficiency and sow traits were not significantly different from 0 and signified no genetic relationships between these traits. Selection for efficient deposition of lean meat should not affect the sow traits and is, therefore, beneficial.