The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females.