Disordered eating includes any pattern of irregular eating that may lead to either extreme weight loss or obesity. The conserved insulin receptor signalling pathway acts to regulate energy balance and nutrient intake, and its central component Akt1 and endpoint effector foxo are pivotal for survival during nutritional stress. Recently generated Akt1 hypomorphic mutant lines exhibit a moderate decrease in lifespan when aged upon standard media, yet show a considerable increase in survival upon amino-acid starvation media. While the loss of foxo function significantly reduces the survival response to amino-acid starvation, a combination of these Akt1 hypomorphs and a null foxo mutation reveal a synergystic and severe reduction in lifespan upon standard media, and an epistatic relationship when undergoing amino-acid starvation. Evaluation of survivorship upon amino-acid starvation media of these double mutants indicate a phenotype similar to the original foxo mutant demonstrating the role of foxo in this Akt1 phenotype. These results indicate that the subtle manipulation of foxo through Akt1 can enhance survival during adverse nutrient conditions to model the ability of individuals to tolerate nutrient deprivation. Ultimately, we believe that a Drosophila model of disordered eating could generate new avenues to develop potential therapies for related human conditions.