The optimal allocation of resources to repair vs. reproduction in an organism may depend on the magnitude and pattern of the external mortality it is experiencing, which, in turn, may depend on its feeding and mate-finding behavior. Thus, the fundamental activities of an organism, i.e., to feed, to survive, and to reproduce, are interrelated through trade-offs. Here, we use small planktonic copepods to examine how adult longevity and ageing patterns in a protected laboratory environment relate to the feeding mode (active searching vs. passive ambush feeding), mate-finding behavior, and spawning mode of the species. We show that average adult longevity varies between species by an order of magnitude and is independent of body size. Ambush feeders that carry their eggs have longer average life spans and experience higher mortality later in life relative to active feeders that broadcast their eggs. Males generally have shorter life spans and experience higher mortality earlier in life than females, and this difference may be accentuated in species where dangerous mate-finding is male biased. We finally show a trade-off between longevity and fecundity, with ambush feeders producing eggs at a rate five to 10 times lower than the active feeders, consistent with predictions from optimal resource allocation theory.