Epigenetic inheritance refers to changes in gene expression that are heritable across generations but are not caused by changes in the DNA sequence. Many environmental factors are now known to cause epigenetic changes, including the presence of pathogens, parasites, harmful chemicals and other stress factors. There is increasing evidence that transcriptional reprogramming caused by epigenetic modifications can be passed from parents to offspring. Indeed, diseases such as cancer can occur in the offspring due to epigenetically-inherited gene expression profiles induced by stress experienced by the parent. Empirical studies to investigate the role of epigenetics in trans-generational gene regulation and disease require appropriate model organisms. In this review, we argue that selected insects can be used as models for human diseases with an epigenetic component because the underlying molecular mechanisms (DNA methylation, histone acetylation and the expression of microRNAs) are evolutionarily conserved. Insects offer a number of advantages over mammalian models including ethical acceptability, short generation times and the potential to investigate complex interacting parameters such as fecundity, longevity, gender ratio, and resistance to pathogens, parasites and environmental stress.