Recent findings in diverse organisms strongly support a conserved role for mitochondrial electron transport chain dysfunction in longevity modulation, but the underlying mechanisms are not well understood. One way cells cope with mitochondrial dysfunction is through a retrograde transcriptional reprogramming response. In this review, we primarily focus on the work that has been performed in Caenorhabditis elegans to elucidate these mechanisms. We describe several transcription factors that participate in mitochondria-to-nucleus signaling and discuss how they mediate the relationship between mitochondrial dysfunction and life span.