Since the discovery of single gene mutations that double its lifespan, the nematode Caenorhabditis elegans has provided remarkable insights into the biology of aging. The precisely measurable lifespan of worms has proven to be an efficient tool to assess the impact of various genetic, physiological and environmental factors on organismal aging. In this article, we describe methods to set up and monitor experiments to determine worm lifespan. We include procedures used for classical, small-scale lifespan assays that are generally performed on solid media, and review recent advances in high-throughput, automated longevity experiments conducted in liquid culture and microfluidic devices. In addition, tools that help analyze this data to obtain survival statistics are summarized, and C. elegans strains that offer particular advantages for lifespan studies are listed.