Developmental timing genes catalyze stem cell progression and animal maturation programs across taxa. Caenorhabditis elegans DRE-1/FBXO11 functions in an SCF E3-ubiquitin ligase complex to regulate the transition to adult programs, but its cognate proteolytic substrates are unknown. Here, we identify the conserved transcription factor BLMP-1 as a substrate of the SCF(DRE-1/FBXO11) complex. blmp-1 deletion suppressed dre-1 mutant phenotypes and exhibited developmental timing defects opposite to dre-1. blmp-1 also opposed dre-1 for other life history traits, including entry into the dauer diapause and longevity. BLMP-1 protein was strikingly elevated upon dre-1 depletion and dysregulated in a stage- and tissue-specific manner. The role of DRE-1 in regulating BLMP-1 stability is evolutionary conserved, as we observed direct protein interaction and degradation function for worm and human counterparts. Taken together, posttranslational regulation of BLMP-1/BLIMP-1 by DRE-1/FBXO11 coordinates C. elegans developmental timing and other life history traits, suggesting that this two-protein module mediates metazoan maturation processes.