Inhibiting expression of eukaryotic translation initiation factor 4G (eIF4G) arrests normal development but extends lifespan when suppressed during adulthood. In addition to reducing overall translation, inhibition alters the stoichiometry of mRNA translation in favor of genes important for responding to stress and against those associated with growth and reproduction in C. elegans. In humans, aberrant expression of eIF4G is associated with certain forms of cancer and neurodegeneration. Here we review what is known about the roles of eIF4G in molecular, cellular, and organismal contexts. Also discussed are the gaps in understanding of this factor, particularly with regard to the roles of specific forms of expression in individual tissues and the importance of understanding eIF4G for development of potential therapeutic applications.