The evolutionary theory of aging predicts that longevity will decline via drift or age-specific tradeoffs when selection favors early life fitness. Many Drosophila melanogaster populations continually terminated at young adult ages retain surprisingly long postselection lifespans. We compiled three decades of longevity data from the Ives population, demonstrating that postselective longevity was both substantial (30 days) and temporally stable over this period. Recently, alleles with positive pleiotropic effects between adjacent ages, particularly those affecting overall condition, have been integrated into the theory and may explain the extended longevity observed. We experimentally tested this hypothesis by isolating 20 hemiclones from Ives and allowing spontaneous mutations to accumulate (MA) for 35 generations. Fitness and longevity were positively genetically correlated in control females, and both traits declined due to MA. Crucially, MA induced a strong positive genetic correlation between the traits in both sexes, implying that mutations with early-life impacts also reduce late-life survival. Our results suggest that extended postreproductive longevity is actively maintained by selection for early-life fitness via positive pleiotropy and is not a merely a byproduct of exhaustion of genetic variation or weak drift. Thus mutation-selection balance for early fitness may govern variance in longevity in this system: a balance struck remarkably long after selection for continued survival ceases.