Caloric/dietary restriction (CR/DR) can promote longevity and protect against age-associated disease across species. The molecular mechanisms coordinating food intake with health-promoting metabolism are thus of significant medical interest. We report that conserved Caenorhabditis elegans microRNA-80 (mir-80) is a major regulator of the DR state. mir-80 deletion confers system-wide healthy aging, including maintained cardiac-like and skeletal muscle-like function at advanced age, reduced accumulation of lipofuscin, and extended lifespan, coincident with induction of physiological features of DR. mir-80 expression is generally high under ad lib feeding and low under food limitation, with most striking food-sensitive expression changes in posterior intestine. The acetyltransferase transcription co-factor cbp-1 and interacting transcription factors daf-16/FOXO and heat shock factor-1 hsf-1 are essential for mir-80(Δ) benefits. Candidate miR-80 target sequences within the cbp-1 transcript may confer food-dependent regulation. Under food limitation, lowered miR-80 levels directly or indirectly increase CBP-1 protein levels to engage metabolic loops that promote DR.