Caloric restriction (CR) has been extensively documented for its profound role in effectively extending maximum lifespan in many different species. However, the accurate mechanisms, especially at the cellular level, for CR-induced aging delay are still under intense investigation. An emerging technique, recently explored in our laboratory, provides precisely controllable caloric intake in a cultured cellular system that allows real-time observation and quantitative analysis of the impact of CR on the molecular cellular level during the aging processes. This in vitro method allows investigation of the molecular mechanisms pertaining to how CR influences aging processes leading to life extension in human cellular systems. It will provide important clinical implications for future preventive approaches for aging and aging-related degeneration diseases in humans. Hence, we will discuss the detailed procedures of this novel technique as well as the analysis of relevant aging biomarkers and its broad application in the field.