The aim of this work was to estimate direct and correlated responses in survival rates in an experiment of selection for ovulation rate (OR) and litter size (LS) in a line of rabbits (OR_LS). From generation 0 to 6 (first selection period), females were selected only for second gestation OR estimated by laparoscopy. From generation 7 to 13 (second selection period), a 2-stage selection for OR and LS was performed. In stage 1, females having the greatest OR at second gestation were selected. In stage 2, selection was for the greatest average LS of the first 2 parities of the females selected in stage 1. Total selection pressure in females was about 30%. The line had approximately 17 males and 75 females per generation. Traits recorded were OR estimated as the number of corpora lutea in both ovaries, number of implanted embryos (IE) estimated as the number of implantation sites, LS estimated as total number of rabbits born recorded at each parity, embryo survival (ES) estimated as IE/OR, fetal survival (FS) estimated as LS/IE, and prenatal survival (PS) estimated as LS/OR. Data were analyzed using Bayesian methodology. The estimated heritabilities of LS, OR, IE, ES, FS, and PS were 0.07, 0.21, 0.10, 0.07, 0.12, and 0.16, respectively. Direct and correlated responses from this study were estimated in each period of selection as the difference between the average genetic values of last and first generation. In the first selection period, OR increased 1.36 ova, but no correlated response was observed in LS due to a decrease on FS. Correlated responses for IE, ES, FS, and PS in the first selection period were 1.11, 0.00, -0.04, and -0.01, respectively. After 7 generations of 2-stage selection for OR and LS, OR increased 1.0 ova and response in LS was 0.9 kits. Correlated responses for IE, ES, FS, and PS in the second selection period were 1.14, 0.02, 0.02, and 0.07, respectively. Two-stage selection for OR and LS can be a promising procedure to improve LS in rabbits.