In simple systems, lifespan can be extended by various methods including dietary restriction, mutations in the insulin/insulin-like growth factor (IGF) pathway or mitochondria among other processes. It is widely held that the mechanisms that extend lifespan may be adapted for diminishing age-associated pathologies. We tested whether a number of compounds reported to extend lifespan in C. elegans could reduce age-dependent toxicity caused by mutant TAR DNA-binding protein-43 in C. elegans motor neurons. Only half of the compounds tested show protective properties against neurodegeneration, suggesting that extended lifespan is not a strong predictor for neuroprotective properties. We report here that resveratrol, rolipram, reserpine, trolox, propyl gallate, and ethosuximide protect against mutant TAR DNA-binding protein-43 neuronal toxicity. Finally, of all the compounds tested, only resveratrol required daf-16 and sir-2.1 for protection, and ethosuximide showed dependence on daf-16 for its activity.