Adult dietary restriction (DR) extends lifespan, but the mechanisms that underlie this effect are not well understood. Many DR studies have demonstrated that lifespan extension tends to be accompanied by a reduction in female fecundity - a correlation widely interpreted as evidence that DR triggers an adaptive re - allocation of resources from reproduction to somatic maintenance. Yet, recent evidence suggests that survival and fecundity need not always trade off under DR, calling the re-allocation hypothesis into question. Because the effects of DR on both survival and reproduction have rarely been tested in both sexes, or under a range of ecologically-relevant environments, the generality of this trade-off remains unclear. We examined the effects of DR on survival and reproduction in both sexes and across a range of environments (larval diet quality and adult sex ratio) in the neriid fly Telostylinus angusticollis. We found that the lifespan-reproduction trade-off is both context- and sex-dependent. Although DR extended lifespan in both sexes by 65% and rendered females completely infertile, costs of DR on male fecundity were subtle and evident only in particular environmental combinations. Our findings suggest that a re-allocation of resources may not underlie the lifespan extension response to DR. Instead, full feeding may be associated with increased costs in comparison to DR, such that lifespan extension may be achieved without an increased resource investment to the soma.