Accumulating evidence indicates that oxidative stress can occur through overproduction of reactive oxygen species (ROS) and/or reduced anti-oxidant potentials under pathophysiological conditions and plays an important role in the development of cardiovascular diseases (CVDs). Adapter protein p66Shc has the property to directly stimulate mitochondrial ROS generation by an oxidoreductase activity. A growing body of evidence implies that p66Shc plays a critical role in the pathophysiology of age-related vascular diseases. Silent mating type information regulator 2 homolog 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase (HDAC), has also been implicated in protection against vascular aging and age-related vascular diseases. Recently, we demonstrated that SIRT1 protects blood vessels from hyperglycemia-induced endothelial dysfunction through a novel mechanism involving the downregulation of p66Shc expression. In this review, we discuss the cross-talk between these two longevity genes as a mechanism of preventing vascular diseases by involving anti-oxidative stress responses and inhibiting endothelial senescence.