Restricting the food intake of rodents extends the median length of life and the maximum life-span. It also retards most age-associated physiologic change and age-associated diseases. Our research indicates that the ability to retard disease processes is not the major reason for the extension of life-span or for the retardation of age change in most physiologic systems. Rather, it appears that most of the actions of food restriction are due to its ability to slow the primary aging processes. We found this action to relate to the restriction of calories rather than specific nutrients (e.g., protein or fat or minerals). Our findings point to the reduction in caloric intake per rat rather than per gram lean body mass as the basis of the retardation of aging processes by food restriction. The challenge is to learn how caloric intake per rat is coupled to the aging processes. We are currently focusing on the possibility that neural and endocrine mechanisms are involved. Our preliminary findings point to the likelihood of an involvement of the insulin-glucose system.