Haploinsufficiency for the p53 family member p73 causes behavioral and neuroanatomical correlates of neurodegeneration in aging mice, including the appearance of aberrant phospho-tau-positive aggregates. Here, we show that these aggregates and tau hyperphosphorylation, as well as a generalized dysregulation of the tau kinases GSK3β, c-Abl, and Cdk5, occur in the brains of aged p73+/- mice. To investigate whether p73 haploinsufficiency therefore represents a general risk factor for tau hyperphosphorylation during neurodegeneration, we crossed the p73+/- mice with 2 mouse models of neurodegeneration, TgCRND8+/Ø mice that express human mutant amyloid precursor protein, and Pin1-/- mice. We show that haploinsufficiency for p73 leads to the early appearance of phospho-tau-positive aggregates, tau hyperphosphorylation, and activation of GSK3β, c-Abl, and Cdk5 in the brains of both of these mouse models. Moreover, p73+/-;TgCRND8+/Ø mice display a shortened lifespan relative to TgCRND8+/Ø mice that are wild type for p73. Thus, p73 is required to protect the murine brain from tau hyperphosphorylation during aging and degeneration.