In a variety of organisms, adulthood is divided into aging and late life, where aging is a period of exponentially increasing mortality rates and late life is a period of roughly plateaued mortality rates. In this study we used ∼57,600 Drosophila melanogaster from six replicate populations to examine the physiological transitions from aging to late life in four functional characters that decline during aging: desiccation resistance, starvation resistance, time spent in motion, and negative geotaxis. Time spent in motion and desiccation resistance declined less quickly in late life compared to their patterns of decline during aging. Negative geotaxis declined at a faster rate in late life compared to its rate of decline during aging. These results yield two key findings: (1) Late-life physiology is distinct from the physiology of aging, in that there is not simply a continuation of the physiological trends which characterize aging; and (2) late life physiology is complex, in that physiological characters vary with respect to their stabilization, deceleration, or acceleration in the transition from aging to late life. These findings imply that a correct understanding of adulthood requires identifying and appropriately characterizing physiology during properly delimited late-life periods as well as aging periods.