The stochastic modeling technique serves as a way to correctly separate "return rate" of marked animals into survival rate (phi) and capture probability (p). The method can readily be used with the program MARK freely distributed through Internet (Cooch, White, 2009). Input data for the program consist of "capture histories" of marked animals--strings of units and zeros indicating presence or absence of the individual among captures (or sightings) along the set of consequent recapture occasions (e.g., years). Probability of any history is a product of binomial probabilities phi, p or their complements (1 - phi) and (1 - p) for each year of observation over the individual. Assigning certain values to parameters phi and p, one can predict the composition of all individual histories in the sample and assess the likelihood of the prediction. The survival parameters for different occasions and cohorts of individuals can be set either equal or different, as well as recapture parameters can be set in different ways. There is a possibility to constraint the parameters, according to the hypothesis being tested, in the form of a specific model. Within the specified constraints, the program searches for parameter values that describe the observed composition of histories with the maximum likelihood. It computes the parameter estimates along with confidence limits and the overall model likelihood. There is a set of tools for testing the model goodness-of-fit under assumption of equality of survival rates among individuals and independence of their fates. Other tools offer a proper selection among a possible variety of models, providing the best parity between details and precision in describing reality. The method was applied to 20-yr recapture and resighting data series on 4 thrush species (genera Turdus, Zoothera) breeding in the Yenisei River floodplain within the middle taiga subzone. The capture probabilities were quite independent of observational efforts fluctuations while differing significantly between the species and sexes. The estimates of adult survival rate, obtained for the Siberian migratory populations, were lower than those for sedentary populations from both the tropics and intermediate latitudes with marine climate (data by Ricklefs, 1997). Two factors, the average temperature influencing birds during their annual movements, and climatic seasonality (temperature difference between summer and winter) in the breeding area, fit the latitudinal pattern of survival most closely (R2 = 0.90). Final survival of migrants reflects an adaptive life history compromise for use of superabundant resources in breeding area at the cost of avoidance of severe winter conditions.