The individual ages of bivalve molluscs can be inferred from the age rings laid down every year in the shell, especially in species inhabiting areas with seasonal variability in environmental factors such as food supply and temperature. Animals obtained from different environmental settings can therefore be used to investigate how specific environmental factors shape the process of ageing in this animal class. Some bivalves have extraordinary long life spans. Species like the ocean quahog Arctica islandica and the freshwater pearl mussel Margaritifera margaritifera live for over hundreds of years. Few studies so far have attempted to study the process of ageing, either specifically in long-lived bivalves or generally in very long-lived species. This review summarizes the current knowledge of cellular ageing in bivalves with a focus on the antioxidant system, as well as tissue repair and metabolic capacities of extremely long-lived species. We discuss the applicability of these animals as models for different ageing theories. We recommend a focus of future research on the molecular mechanisms potentially involved in supporting longevity in these species, including evolutionary old cellular mechanisms such as autophagy and apoptosis, as well as diverse cellular repair pathways.