The risk that insect-resistant transgenic plants may pose for solitary bees was assessed by determining longevity of adult Osmia bicornis (O. rufa) chronically exposed to transgenic oilseed rape expressing oryzacystatin-1 (OC-1) or to the purified insecticidal proteins recombinant rOC-1, Kunitz soybean trypsin inhibitor (SBTI), Galanthus nivalis agglutinin (GNA), or Bacillus thuringiensis toxin Cry1Ab dissolved in sugar solution (at 0.01 and 0.1%, w:v, Cry1Ab only at 0.01%). Compared to control bees, longevity was significantly reduced by SBTI and GNA at both concentrations and by rOC-1 at 0.1%, but not by Cry1Ab or rOC-1 at 0.01%. Longevity on the OC-1 oilseed rape was not significantly different from the control plants. The effects of SBTI and rOC-1 on longevity were investigated through characterization of the digestive proteinases of O. bicornis and analysis of the response in proteinase profiles to ingestion of these proteinase inhibitors. A relatively complex profile of at least four types of soluble proteolytic enzymes was identified. Serine proteinases were found to be predominant, with metallo and especially cysteine proteinases making a smaller albeit significant contribution. The compensatory response to in vivo enzyme inhibition was similar for SBTI and rOC-1 although less pronounced for rOC-1. It consisted of a non-specific overproduction of native proteinases, both sensitive and insensitive, and the induction of a novel aspartic proteinase.