While dietary restriction usually increases lifespan, an intermittent feeding regime, where periods of deprivation alternate with times when food is available, has been found to reduce lifespan in some studies but prolong it in others. We suggest that these disparities arise because in some situations lifespan is reduced by the costs of catch-up growth (following the deprivation) and reproductive investment, a factor that has rarely been measured in studies of lifespan. Using three-spined sticklebacks, we show for the first time that while animals subjected to an intermittent feeding regime can grow as large as continuously fed controls that receive the same total amount of food, and can maintain reproductive investment, they have a shorter lifespan. Furthermore, we show that this reduction in lifespan is linked to rapid skeletal growth rate and is due to an increase in the instantaneous risk of mortality rather than in the rate of senescence. By contrast, dietary restriction caused a reduction in reproductive investment in females but no corresponding increase in longevity. This suggests that in short-lived species where reproduction is size dependent, selection pressures may lead to an increase in intrinsic mortality risk when resources are diverted from somatic maintenance to both growth and reproductive investment.