We model the cross-stage effect of juvenile growth on future cohort survival with vitality, a single stochastic measure of an organism's survival capacity that results in death when it reaches 0. In this construct, the distribution of vitality at the end of a growth treatment stage, which is a measure of survival capacity heterogeneity, determines a cohort's susceptibility to starvation in a subsequent challenge stage. The model predicts that the treatment-stage duration and mass gain determine the mean and variance of the initial vitality distribution of the challenge stage, which in turn determine the effect of a challenge-stage stressor on survival. Studies linking the effect of juvenile growth on time to starvation for chinook salmon and yellow perch are compared to model predictions. The feasibility of predicting survival and heterogeneity in overwintering fish populations from first-year growth is considered. Some limitations and potential extensions of the model to other scenarios are discussed.