The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.