Quantitative trait locus (QTL) mapping provides a means to discover and roughly position regions of the genome that harbor genes responsible for natural variation in a complex trait. QTL mapping has been utilized extensively in the pursuit of genes contributing to longevity, chiefly in two animal models, the nematode Caenorhabditis elegans and the dipteran insect Drosophila melanogaster. Research on both species has demonstrated that a relatively small set of loci accounts for most of their genetic variance in lifespan. QTL mapping complements the discovery of longevity genes by mutagenesis screens, because the two procedures are predicted to unveil overlapping but distinct types of genes. We argue that information gained from animal models, even invertebrates, can greatly facilitate the process of gene identification and testing of homologous genes in humans.