In a recent study, we found that male rats that minimally explored a novel environment as infants died significantly faster than their more exploratory brothers. At death, these males had various complex pathologies, precluding identification of specific hormonal mechanisms underlying adult disease progression and mortality. To minimize the variance of disease processes at the end of life, we conducted a longitudinal study with female Sprague-Dawley rats prone to high rates of spontaneous mammary and pituitary tumors. For females that developed either mammary or pituitary tumors, those that had been neophobic (least exploratory) as infants died approximately 6 months earlier than their neophilic (most exploratory) sisters. In the case of mammary tumors, both benign and malignant, neophobic females developed palpable tumors earlier than neophilic females, whereas the interval between first palpation and death was the same for all females, indicating psychosocial regulation of early rather than later stages of the disease. Neophobic females' ovarian function aged more rapidly than their neophilic sisters. Concomitantly, they had lower corticosterone responses to restraint in late adulthood, ruling out high estrogen or corticosterone levels during senescence as causal factors in their accelerated mortality. During puberty, when mammary tissue is proliferating and differentiating, neophobic females experienced more irregular cycles with prolonged "luteal" phases, suggesting a role for prolactin, prolonged progesterone and fewer estrogen surges during this sensitive period for mammary tumor risk. Thus, we identified prolactin, estrogen, progesterone and possibly corticosterone dynamics as candidates for neuroendocrine mechanisms linking infant temperament with onset of adult neoplastic disease.