Metabolism, the continuous conversion between structural molecules and energy, is life in essence. Size, metabolic rate, and maximum life span appear to be inextricably interconnected in all biological organisms and almost follow a "universal" law. The notion of metabolic rate as the natural "rate of living" filled most of the academic discussion on aging in the early 20th century to be later replaced by the free-radical theory of aging. We argue that the rate of living theory was discarded too quickly and that studying factors affecting resting metabolic rate during the aging process may provide great insight into the core mechanisms explaining differential longevity between individuals, and possibly the process leading to frailty. We predict that measures of resting metabolic rate will be introduced in geriatric clinical practice to gather information on the degree of multisystem dysregulation, exhaustion of energy reserve, and risk of irreversible frailty.