Evidence gathered over the past 15 years shows that the nematode Caenorhabditis elegans is excellently suited as a model to study aging processes in the entire organism. Genetic approaches have been used to identify and elucidate multiple mechanisms and their corresponding genes that limit the life span of C. elegans. These highly conserved pathways include the well-studied insulin/IGF-1 receptor-like signaling pathway, which is thought to be a central determinant of life span, since several other mechanisms depend or converge on the insulin/IGF-1 pathway transcription factor DAF-16/FoxO. In this review we focus on new insights into the molecular mechanisms of aging in C. elegans, including new genes acting in the insulin/IGF-1 pathway and germline signaling. In addition, stress response pathways and mitochondrial mechanisms, dietary restriction, SIR2 deacetylase activity, TOR and TUBBY signaling, as well as telomere length contribution are discussed in relation to recent developments in C. elegans aging research.