Fourth instar Chironomus riparius larvae were exposed to four sediments spiked with copper. Length and copper concentration in the tissue were monitored daily. Kinetics data analysis was performed by fitting a one-compartment model. The analysis of growth data was performed using an energy-based approach which estimates a no-effect concentration (NEC). The elimination rate of copper did not depend on the sediment characteristics, whereas the bioconcentration factor differed by a factor of 10 among the tested sediments, accounting for differences in copper bioavailability. Consequently, the NEC expressed in term of exposure concentrations differed substantially between sediments. In contrast, the NEC expressed in terms of body residues did not depend on the sediment characteristics. This work links, for the first time, a mechanistic effects model with the critical body residue approach, and could contribute to develop relevant tools for sediment risk assessment.