The Gompertz-Makeham law (-dn/dt x l/n(t)=C+lambdae(gammat)) so as other genuine laws of Nature is strictly applicable only to ideal objects (populations and cohorts) analogously to laws of mechanics or thermodynamics, which are exactly true only for such physical abstractions as mass points or ideal gases. Therefore, a biologically meaningful interpretation of the parameters of this law is likely to be more important for understanding the aging process than devising of alternative analytical descriptions of biodemographic processes for the sake of a better fit only. Numerical modeling of ideal cohorts of aging organisms obeying the Gompertz-Makeha law makes it possible to differentiate possible real and apparent changes in mortality patterns that occur in human history and in evolution and are observed in gerontological experiments and to demonstratively show such effects as the dependency of longevity upon population size, the evolutionarily important possibility of reciprocal changes in the mean and maximal longevity, or detection of apparent changes in negatively correlated aging rate and vitality when the Makeham term is ignored, which is usual in demography. The basic difference between the Makeham term Cand Gompertz term lambdae(gammat) is suggested to be not that the former is constant, whereas the latter is age-dependent, but that the former comprises the contributions of inherently irresistible stresses to mortality, whereas the latter comprises the contributions of resistible stresses to mortality and shows how changes in the ability to resist them is translated into changes in mortality.