In animals with internal fertilization, sperm competition among males can favor the evolution of male ejaculate traits that are detrimental to females. Female mating preferences, in contrast, often favor traits in males that are beneficial to females, yet little is known about the effect of these preferences on the evolution of male ejaculates. A necessary condition for female preferences to affect the evolution of male ejaculate characteristics is that females select mates based on a trait correlated with ejaculate quality. Previous work has shown that females of the variable field cricket, Gryllus lineaticeps, prefer males that produce calling songs containing faster and longer chirps. In this study, we tested the hypothesis that females receive more beneficial ejaculates from preferred males. Females were placed on either a high- or a reduced-nutrition diet then mated twice to a male of known song phenotype. Females received only sperm and seminal fluid from males during these matings. There was no effect of male song phenotype on any fitness component for females on the high-nutrition diet. Reduced-nutrition females mated to males that produced preferred song types, however, lived longer, produced more eggs, produced more fertile eggs, and had a higher proportion of their eggs fertilized than those mated to other males. The life-span benefit was positively associated with male chirp duration, and the reproductive benefits were positively associated with male chirp rate. We explored two possible mechanisms for the life span and reproductive benefits. First, a path analysis suggested that part of the effect of male chirp duration on female life span may have been indirect; females mated to males that produced longer chirps showed delayed oviposition, and females that delayed oviposition lived longer. Males that produce longer chirps may thus transfer fewer or less potent oviposition stimulants to females in their seminal fluid. Second, there was a positive correlation between male chirp rate and the number of sperm transferred to females. The fertility benefit may thus have resulted from females receiving more sperm from males that produce faster chirps. Finally, there was a negative phenotypic correlation between male chirp rate and chirp duration, suggesting that females may have to trade off the life span and reproduction benefits when selecting a mate.