A Weibull proportional hazards model was used to analyze the effects of 13 linear type traits, final score, and inbreeding on the functional survival of 268,008 US Jersey cows in 2416 herds with first calving from 1981 to 2000. Functional survival was defined as the number of days from first calving until involuntary culling or censoring. The statistical model included the time-dependent effects of herd-year-season of calving, parity by stage of lactation interaction, and within-herd-year quintile for mature equivalent milk yield, as well as the time-independent effects of inbreeding, age at first calving, and linear type traits or final score (analyzed one at a time). Each type trait was divided into 10 classes, and the relative risk of involuntary culling was calculated for animals in each class after accounting for the aforementioned management factors. Type traits with the greatest contribution to the likelihood function were udder depth, fore udder attachment, front teat placement, and udder support. Cows with low scores for these traits had a risk of culling that was 1.3 to 1.8 times that of cows with intermediate scores. Cows with high scores for udder depth and udder support had a risk of culling only 0.7 to 0.85 as great as that of cows with intermediate scores. Intermediate scores were desirable for rear leg set, dairy form, and strength, but stature, rump angle, and rump width had negligible effects on survival. Cows with low final scores had a risk of culling that was 1.35 times that of cows with intermediate scores, whereas cows with high final scores had a risk of culling that was 0.8 times that of cows with intermediate scores. Animals with inbreeding coefficients greater than 10% had a slightly higher risk of culling than animals with inbreeding coefficients less than 5%.