Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that pose global ecological and human health problems. Although it is well established that PCBs are associated with a variety of adverse health effects in wildlife and in humans, it is often difficult to determine direct cause-and-effect relationships between exposure and specific health outcomes. In this study, gene expression signatures were used to relate exposure to PCBs with altered physiological responses and/or specific health effects. Real-time PCR was used to measure gene expression levels for 10 genes in Xenopus laevis tadpoles (18 days postfertilization, PF) after acute exposure (2 days) to the PCB mixture Aroclor 1254. Specific gene expression signatures correlated with exposure and were predictive of adverse health effects. Exposure to low levels of Aroclor 1254 (5-50 ppb) significantly increased expression of six genes, independent of any health effects; exposure to midlevel concentrations (300-400 ppb) significantly decreased expression levels of two genes, NGF and beta-actin, prior to the onset of observable health effects; exposure to higher doses (500-700 ppb) significantly decreased NGF and beta-actin expression concomitant with the appearance of gross morphological abnormalities, behavioral deficits, and a statistically significant decrease in survival. This study expands upon our previous work that demonstrated an age-dependent susceptibility to Aroclor 1254 in Xenopus laevis tadpoles and that defined specific gene expression signatures as useful bioindicators of exposure and as predictors of overt or impending health effects.