Some acetophenone-derived bis Mannich bases were synthesized: bis[beta-benzoylethyl]ethylamine hydrochloride (IIa), bis[beta-(p-methylbenzoyl)ethyl]ethylamine hydrochloride (IIb), bis[beta-(p-chlorobenzoyl)ethyl]ethy- lamine hydrochloride (IId), bis[(2-thienylcarbonyl)ethyl]ethylamine hydrochloride (IIe); some corresponding piperidinol derivatives: 3-benzoyl-1-ethyl-4-phenyl-4-piperidinol hydrochloride (IIIa), 1-ethyl-3-(p-methyl- benzoyl)-4-(p-methylphenyl)-4-piperidinol hydrochloride (IIIb), 1-ethyl-3-(p-methoxybenzoyl)-4-(p-methoxy- phenyl)-4-piperidinol hydrochloride (IIIc), 1-ethyl-3-(p-chlorobenzoyl)-4-(p-chlorophenyl)-4-piperidinol hydrochloride (IIId), 1-ethyl-4-(2-thienyl)-3-(2-thienylcarbonyl)-4-piperidinol hydrochloride (IIIe); and some representative quaternary piperidinols: 3-benzoyl-1-ethyl-4-hydroxy-1-methyl-4-phenylpiperidinium iodide (IIIf), 1-ethyl-4-hydroxy-1-methyl-3-(p-methylbenzoyl)-4-(p-methylphenyl)piperidinium iodide (IIIg). Toxicity was tested by the brine shrimp bioassay as an intermediate test before further in vivo animal experiments. Piperidine derivatives were found to be more potent than bis Mannich bases. Quaternary piperidine derivatives IIIf and IIIg and also non-quaternary piperidine derivatives IIIb, IIIe, IIIc and IIId were more toxic than 5-fluorouracil in brine shrimp bioassay. Except for IIe, bis Mannich bases were not effective. Quaternization and conversion of bis Mannich bases to corresponding piperidines improved the toxicity. The lipid solubility of the compounds may not affect the toxicity. From these findings the quaternary piperidine derivatives IIIf and IIIg could be used in further drug development and also for in vivo experiments.