Since the interaction of the parasitic wasp Habrobracon with the space environment could not be prejudged, we decided to test approximately 30 different parameters of a genetic, mutational, biochemical, behavioral, and physiological character in the one spaceflight we had at our disposal. These parameters were examined at six different exposures of gamma-radiation (including 0 dose) in flight, resulting in about 180 different endpoints in all. The most profound effects of spaceflight in conjunction with radiation were decreased hatchability and enhanced fecundity of eggs exposed to spaceflight at different stages of oogenesis. The interpretation we favor is that these two endpoints are reflections of chromosomal non-disjunction in the former case and inhibition of cell division in the latter. Our most comprehensive study of mutagenesis was on sperm, where dominant lethality, recessive lethality, translocations, and visible mutations were assayed; the only effect found was a threefold enhancement of the recessive lethal mutation frequency in the non-irradiated sperm in the orbited Habrobracon males. Behavioral and biochemical differences were found. Mating activity of orbited males was severely disrupted and xanthine dehydrogenase activity was sharply decreased in the irradiated flight animals, an unexpected observation. Postflight experiments were like the ground-based control experiments in all aspects but one. Under conditions of vibration similar to those encountered during the launch and re-entry, the mutation frequency in the sperm increased by a factor of three over that of the non-vibrated control.