Selection of a line of White Leghorn chickens for high group productivity and longevity resulted in reducing cannibalism and flightiness in multiple-hen cages. Improvements in survival might have been due to changes of physiological homeostasis. The objective of the present study was to test the hypothesis that genetic selection for high (HGPS) and low (LGPS) group productivity and survivability also altered regulation of neuroendocrine homeostasis. Hens were randomly assigned to individual cages at 17 wk of age. At 21 wk of age, blood concentrations of dopamine, epinephrine, norepinephrine, and serotonin were measured using HPLC assay. Blood concentrations of corticosterone were measured using radioimmunoassay. The LGPS hens had greater blood concentrations of dopamine and epinephrine than the HGPS hens (P < 0.01). The blood concentration of norepinephrine was not significantly different between the lines, but the ratio of epinephrine to norepinephrine was greater in the LGPS hens (P < 0.01). The blood concentrations of serotonin were also higher in the LGPS hens compared to those in the HGPS hens (P < 0.01). Although the HGPS hens tended to have a higher level of blood corticosterone, the difference was not significant (1.87 +/- 0.19 vs. 1.49 +/- 0.21 ng/mL; P = 0.08). The results suggest that selection for group productivity and survivability alters the chickens' neuroendocrine homeostasis, and these changes may correlate with its line-unique coping ability to domestic environments and survivability.