The genetic analysis of the yeast replicative life span has revealed the importance of metabolic control and resistance to stress. It has also illuminated the pivotal role in determining longevity that the RAS genes play by the maintenance of homeostasis. This role appears to be performed by the coordination of a variety of cellular processes. Metabolic control seems to occupy a central position among these cellular processes that include stress resistance. Some of the features of metabolic control in yeast resemble the effects of the daf pathway for adult longevity in Caenorhabditis elegans and the metabolic consequences of selection for extended longevity in Drosophila melanogaster, as well as some of the features of caloric restriction in mammals. The distinction between dividing and nondividing cells is proposed to be less important for the aging process than generally believed because these cell types are part of a metabolic continuum in which the total metabolic capacity determines life span. As a consequence, the study of yeast aging may be helpful in understanding processes occurring in the aging brain.