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SUMMARY

Patterns of gene expression can be used to charac-
terize and classify neuronal types. It is challenging,
however, togenerate taxonomies that fulfill theessen-
tial criteria of being comprehensive, harmonizingwith
conventional classification schemes, and lacking
superfluous subdivisions of genuine types. To
address these challenges, we usedmassively parallel
single-cell RNA profiling and optimized computa-
tional methods on a heterogeneous class of neurons,
mouse retinal bipolar cells (BCs). Fromapopulationof
�25,000 BCs, we derived a molecular classification
that identified 15 types, including all types observed
previously and two novel types, one of which has
a non-canonical morphology and position. We vali-
dated the classification schemeand identifieddozens
of novelmarkers usingmethods thatmatchmolecular
expression to cell morphology. This work provides a
systematic methodology for achieving comprehen-
sive molecular classification of neurons, identifies
novel neuronal types, and uncovers transcriptional
differences that distinguish types within a class.

INTRODUCTION

Investigations into brain development, function, and disease

depend upon accurate identification and categorization of cell

types. Assignment of roles, genes, or pathologies to specific

types allows fundamental processes to be understood with

greater precision than when they are assigned to brain regions

or broad classes of cells. Moreover, molecular identifiers of spe-

cific types enable comparison of results obtained at different

times, in different laboratories, or following experimental pertur-

bations. In model organisms, they enable genetic access, allow-
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ing neurons to be marked and manipulated. Accordingly,

numerous methods have been developed to classify neurons

(Seung and Sümbül, 2014).

Despite methodological advances, the enterprise of cell type

categorization remains challenging for both technical and con-

ceptual reasons. Conceptually, the very definition of a ‘‘cell

type’’ is contentious. Existing taxonomies represent neurons

as a hierarchy of types whose distinctions reflect criteria such

as morphology, physiology, and gene expression (Sanes and

Masland, 2015). While distinctions at the upper levels of this

hierarchy are easily agreed upon (e.g., sensory versus motor

neurons), finer divisions are less obvious. It is also unclear

whether distinctions based on morphological, molecular, and

physiological properties agreewith each other. Finally, some dis-

tinctions are difficult to quantify. Indeed, few diverse neuronal

classes have been comprehensively partitioned into types.

A taxonomy based onmolecular features is a potential solution

to these problems. Several recent studies have used single-cell

RNA sequencing (scRNA-seq) to group cells into types based on

gene expression signatures (Darmanis et al., 2015; Macosko

et al., 2015; Pollen et al., 2014; Tasic et al., 2016; Usoskin

et al., 2015; Zeisel et al., 2015). However, these studies have

not been able to determinewhether the groups represent distinct

types, or whether all types in the population are represented.

Among many obstacles, two stand out. First, the number of

cells profiled to date, typically ranging from a hundred to a few

thousand, is likely too few for complete sampling and categoriza-

tion. Second, satisfactory classification requires that molecular

criteria be validated against an orthogonal criterion of cell type.

To address these challenges, we set out to generate a

comprehensive, validated classification scheme for a diverse

class of interneurons, the bipolar cells (BCs) of the mouse retina.

BCs receive synaptic input from rod and cone photoreceptors,

process it in diverse ways, and transmit it to retinal ganglion cells

(RGCs), which in turn send axons to the rest of the brain (Fig-

ure 1A). BCs are divided into rod and cone types, based on the

photoreceptors from which they receive their predominant
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Figure 1. Clustering of Bipolar Cells by Drop-Seq

(A) Sketch of retinal cross-section depicting major resident cell classes. Rod and cone photoreceptors detect and transduce light stimuli into chemical signals,

relaying this information to rod and cone bipolar cells (BCs), respectively (turquoise and purple/orange). BCs synapse on retinal ganglion cells (whose axons form

the optic nerve) in the inner plexiform layer (IPL) at varying depths that depend on the BC type.

(B) Overview of experimental strategy. Retinas from Vsx2-GFPmice were dissociated, followed by FAC sorting for GFP+ cells. Single-cell libraries were prepared

using Drop-seq and sequenced. Raw reads were processed to obtain a digital expression matrix (genes3 cells). PCA, followed by graph clustering, was used to

partition cells into clusters and identify cluster-specificmarkers, whichwere validated in vivo usingmethods that detect gene expression and cellular morphology

in combination.

(C–E) 2D visualization of single-cell clusters using tSNE. Individual points correspond to single cells colored according to clusters identified by the (C) Louvain-

Jaccard and (D) Infomap algorithms and numbered in decreasing order of size. Arrows in (C) and (D) indicate a Louvain-Jaccard BC cluster that was partitioned by

Infomap (examined in Figure 5). (E) Clustering output of Infomap when applied on cells from a single Drop-seq experiment (50% of the dataset). The tSNE

representation was only used for visualization and not for defining clusters.

(legend continued on next page)
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synaptic input. They are also divisible into ON and OFF types

based on whether they are excited (depolarized) by increases

or decreases in illumination level. BCs have been divided into

9–12 types, initially by morphological features, which were later

related to physiological and, in some cases, molecular proper-

ties (Euler et al., 2014; Helmstaedter et al., 2013; Wässle et al.,

2009). This prior knowledge is useful for evaluating computa-

tional methods and for validating novel markers or types.

To comprehensively study BCs in a cost-effective manner, we

used Drop-seq, a high-throughput scRNA-seq method that uti-

lizes droplet microfluidics (Macosko et al., 2015). We profiled

�28,000 cells from a transgenic mouse line that marks BCs.

This is 10- to 30-fold more cells than analyzed in recent studies

but at far lower sequencing coverage per cell. We applied scal-

able computational methods to identify cell types. To assess

the tradeoff between cell number and sequencing depth for

resolving cell types, we performed parallel experiments using

conventional scRNA-seq. To relate clusters defined by unsuper-

vised computational analyses to known BC types, we used pre-

viously described type-specific markers, ten transgenic lines,

and a validation method that combines fluorescent in situ

hybridization (FISH) with sparse viral labeling. Together, these

approaches allowed us to match molecularly defined with

morphologically defined BC types (Figure 1B).

Our work addresses three key questions, two of which are

technological: (1) how can one best use scRNA-seq to classify

neuronal types, and (2) can genes relevant for functional differ-

ences among types be identified from an unbiased inquiry? In

answering these questions, we present a framework that can

be used for similar analyses of other heterogeneous cell popula-

tions. The third question is neurobiological: what is the full cohort

of BC types? In answering this question, we identified 15 tran-

scriptionally distinct BC types, including all types identified pre-

viously (Euler et al., 2014), as well as two that had not previously

been described. We also identified molecular markers for each

BC type. The vast majority of BCs displayed transcriptional pro-

files of a single type, with scant evidence for intermediate types

or continua of transcriptional identities.

RESULTS

Drop-Seq of Single Retinal Bipolar Neurons
BCs comprise �7% of all retinal cells in mice (Jeon et al., 1998).

To obtain an enriched population, we used a transgenic line that

expresses GFP in all BCs andMüller glia (Vsx2-GFP) (Rowan and

Cepko, 2004). We collected GFP-positive cells by fluorescence-

activated cell sorting (FACS) (Figure 1B) and prepared scRNA-

seq libraries using Drop-seq, wherein single cells are paired in

droplets with single microparticle beads coated with oligonucle-
(F) Gene expression patterns (columns) of major retinal class markers (left panels

clusters (lower panels) based on the clusters in (C). Clusters with cell-doublet sig

signments, based on the expression of known genes, are indicated on the right (se

3 and 4. The size of each circle depicts the percentage of cells in the cluster in

transcript count in expressing cells (nTrans). MG, Müller glia; AC, amacrine cells

(G) Hierarchical clustering of average gene signatures of BC clusters (Euclidean

sessed using bootstrap (STAR Methods). Relatedness between clusters was use

See also Figures S1, S2, and S3 and Tables S1 and S2.
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otides for reverse transcription (Macosko et al., 2015). These ol-

igonucleotides contain a bead-specific barcode (‘‘cell barcode’’)

uniquely identifying each bead (cell) and a unique molecular

identifier (UMI) that allows ‘‘amplification duplicates’’ to be

recognized and discarded. Thousands of beads can be pro-

cessed in a single reaction, dramatically reducing labor and re-

agent costs.

We obtained data from 45,000 cells, sequenced to a median

depth of 8,200 mapped reads per cell (Figures S1A–S1H; Table

S1), and derived a digital expression matrix of 13,166 appre-

ciably expressed genes across 27,499 cells after aligning reads,

demultiplexing, and counting UMIs. After correcting for batch ef-

fects, we applied principal component (PC) analysis, retained the

37 statistically significant PC scores (p < 10�3, Figures S1I and

S1J), and visualized the cells in two dimensions using t-distrib-

uted stochastic neighborhood embedding (t-SNE) (Figures 1C–

1E and S1K; see STAR Methods for details).

Unbiased Graph Clustering Identifies 26 Putative Cell
Type Clusters
We tested six unsupervised computational approaches for clus-

tering cells by their transcriptional profiles, without reference

to prior knowledge of BC types or markers (Figure S2; STAR

Methods). Two graph clustering algorithms, Louvain-Jaccard

(Blondel et al., 2008; Levine et al., 2015) and Infomap (Rosvall

and Bergstrom, 2008), exhibited superior performance as

judged by a post hoc comparison of predicted clusters to known

BC types, their ability to resolve clusters when applied to subsets

of the data, and their computational scalability (Figures 1C and

1D; STARMethods). Infomap nominated a larger number of clus-

ters than Louvain-Jaccard (Figures S2A and S2F), but most dif-

ferences disappeared upon merging transcriptionally proximal

clusters (Figures 1C and 1D). We focused subsequent validation

efforts on the output of Louvain-Jaccard, which produced the

fewest spurious clusters prior to merging. We obtained the

same clusters when the analysis was repeated using only 50%

of the cells in the dataset, but some clusters were merged

when only 18% of cells were analyzed (Figures 1E, S2K, S2L,

and S2N), suggesting that large numbers of cells are important

for resolving transcriptionally similar types.

Fourteen BC Clusters, Seven Align with Known Types
Fourteen of the 26 clusters generated by Louvain-Jaccard were

identifiable as BCs by expression of the pan-BC markers Vsx2

and Otx2 (Baas et al., 2000; Burmeister et al., 1996) and

absence of markers of other retinal classes (clusters 1 and

3–15; Figures 1C and 1F). These clusters comprised 84% of

all cells analyzed versus 7% in the whole retina, indicating

that FACS resulted in a 12-fold enrichment of BCs. Müller glia
) and known BC type markers (right panels) in BC (upper panels) and non-BC

natures and/or that contained <50 cells are not shown. Putative cell type as-

e Table S2). Nomenclature for BC types 1 and 5 are based on results in Figures

which the marker was detected (R1 UMI), and its color depicts the average

; PR, photoreceptors.

distance metric, average linkage). The confidence level of each split was as-

d in prospective cluster assignment to BC type in (F).



(cluster 2), which are also labeled in the Vsx2-GFP line,

comprised 10.5% of cells. The remaining 11 clusters

(comprising <4% of the dataset), included rods, cones, ama-

crine cells, and cell doublets (Table S2). It is a strength of

scRNA-seq methods that undesired types can be identified

and excluded from further analysis rather than contaminating

the transcriptomes of the relevant types.

We assigned the 14 BC clusters to types by inspecting the

expression of known markers (Table S2). Clusters could be

divided into rod and coneBCsbased on the presence or absence

of RBC markers (e.g., Prkca; cluster 1) or the broad cone BC

marker, Scgn (3–15; Figure 1F) (Kim et al., 2008b; Puthussery

et al., 2010). The cone BC clusters could be further divided into

ON (3–6, 13, 15) and OFF (7–10, 12, 14) BC types based on the

ON bipolar markers Isl1 and/or Grm6 (Elshatory et al., 2007;

Ueda et al., 1997). Additional known markers allowed for the

1:1 assignment of six clusters (4, 5, 8, 10, 12, and14) to sixmatch-

ing cone BC types (BC7, BC6, BC3B, BC2, BC3A, and BC4,

respectively) (Figure 1F; TableS2). Figure 1G shows relationships

among putative BC types, determined by hierarchical clustering

(STAR Methods). These types were consistently reproduced in

a reanalysis of �5,500 BCs from our recent whole retina Drop-

seq study (Macosko et al., 2015) (Figures S3A–S3F).

Seven BC clusters (3, 6, 7, 9, 11, 13, and 15) could not be

unequivocally assigned to known types. We tentatively labeled

them based on marker expression (Figure 1F) and relationships

to known types (Figure 1G). We investigate these ‘‘mystery’’

clusters below.

Validated Molecular Markers for Six BC Types
To identify markers for BC types, we devised a binomial test

to find genes differentially expressed (DE) between clusters (Fig-

ures 2A and S3G; Table S3). To relate markers to cellular

morphology, we developed a method for sparse labeling of

BCs using a lentivirus with a Vsx2 enhancer to express GFP in

BCs and combined this with fluorescent in situ hybridization

(FISH) (Table S4; STAR Methods). In some cases, we also com-

bined FISH with an antibody or a transgenic reporter mouse line.

More than 100 genes were enriched in the RBC cluster (false

discovery rate [FDR] < 0.01) (Table S3), including all previously

reported RBC markers and numerous additional candidates.

We tested 25 candidate genes and validated expression of all

25 using FISH in combination with a RBC-specific antibody,

PKCa (Figures 2B–2D and S4A). We also validated expression

of several low abundance genes, which were RBC-specific but

detected in <30% of the cells in cluster 1 (Figures S4A–S4C).

Thus, the ability to sample a large number of cells acrossmultiple

types enables identification of markers across a wide range of

expression levels.

We next validated newmarkers for BC types 3A, 3B, 4, 6, and 7

(Figure 2A; Table S3). The morphology of FISH-positive cells

revealed by sparse lentiviral labelingwasmatched to reconstruc-

tions from electron microscopy (Helmstaedter et al., 2013) (Fig-

ures 2E–2I, leftmost panels). Erbb4, Nnat, Col11a1, Lect1, and

Igfn1 labeled cells that corresponded in arbor shape and lamina-

tionwith BC3A, BC3B, BC4, BC6, andBC7, respectively (Figures

2E–2I, middle panels). We further validated markers for all five

types by combinatorial labeling with known markers and use of
transgenic lines (Figures S5A–S5E). Many BC2 markers have

been identified previously (Chow et al., 2004; Fox and Sanes,

2007; Haverkamp et al., 2003), all of which were enriched in clus-

ter 10 (Figure S5F). We also devised a FISH protocol to label

retinal whole mounts and confirmed that patterns of labeled

somata across the whole retina were consistent with authentic

neuronal types (Figures 2E–2I, rightmost panels).

Together, these results validate markers for seven BC types.

We next turned to the remaining seven BC clusters, which

were less readily assigned to known types.

A BC1 Variant with Amacrine-like Morphology
Clusters 7 and 9 both exhibited BC1 signatures

(Tacr3+Rcvrn�Syt2�). This was unexpected, as previous studies

had indicated BC1 to be a single population (Helmstaedter et al.,

2013; Wässle et al., 2009). Although these clusters (BC1A and

BC1B) were each other’s closest relatives (Figure 1G), 139 genes

were >2-fold differentially expressed between them (FDR <

0.01), suggesting that they represented distinct cell types (see

Figure 3A for examples).

To explore whether BC1A and BC1B were morphologically

distinct, we used the MitoP transgenic line in which CFP is ex-

pressed in BC1s and an amacrine cell (AC) type called nGnG

(Kay et al., 2011; Schubert et al., 2008). BC1A markers labeled

cells with bipolar morphology. Surprisingly, BC1B markers

labeled cells that were unipolar, lacking a dendrite extending

to the outer plexiform layer (OPL), where BCs are innervated

by photoreceptors (Figures 3B and S6A–S6F). Moreover, BC1A

somata were intermingled with other BCs nearer the OPL

border, whereas BC1B somata were located closer to the IPL,

among AC somata. Nonetheless, BC1B cells, expressed pan-

BC markers but neither pan-AC markers nor the nGnG AC

marker Ppp1r17 (Figures 1F, 3A, and 3C).

We confirmed the unusual morphology of BC1B cells using the

lentiviral method and a Fezf1-cre knockin mouse line (Figures

3D–3F and S6G). Moreover, Della Santina et al. (2016) recently

observed cells that likely correspond to BC1B in another trans-

genic line and confirmed that their synaptic ultrastructure is char-

acteristic of BC axon terminals.

As BC1B cells have BC-AC hybrid properties, we asked

whether their developmental origins resembled those of BCs or

ACs. We stained MitoP retinas at multiple ages with an antibody

against Lhx3, which is expressed by BC1B but not BC1A cells

(Figures 3A and S6L). We observed two sets of CFP+ Lhx3+

cells, those with a bipolar morphology in the outer part of the

INL, where conventional BCs reside, and those with a unipolar

morphology closer to where ACs are located. The percentage

of CFP+ Lhx3+ cells with a unipolar rather than bipolar

morphology progressively increased from 3% at P6 to over

80% by P17 (Figure 3G). BC1B cells with short, seemingly re-

tracting dendrites were observed at an intermediate position

at P6–P8. Thus, both BC1 types originate with a bipolar

morphology, but BC1B cells lose their apical process and trans-

locate to the amacrine layer (Figures 3H, 3I, and S6H–S6K).

Four Distinct BC5 Types
To date, molecular studies have revealed only a single BC5

type in mice (Wässle et al., 2009), but morphological and
Cell 166, 1308–1323, August 25, 2016 1311
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labeled cell bodies. Rightmost panels show FISH labeling of cell bodies on retinal whole mounts. To reduce background puncta in the GFP+ lentivirus-labeled

cells, an outlier removal noise filter was applied (STAR Methods). Scale bars indicate 20 mm for main panels and 10 mm for insets.

See also Figures S4 and S5 and Tables S3 and S4.
physiological analyses have shown the existence of additional

BC5-like populations including a type, provisionally called

XBC, that laminates in proximity to BC5 (Greene et al., 2016;

Hellmer et al., 2016; Helmstaedter et al., 2013). Our unsuper-

vised analysis identified four BC5 clusters (Figure 1G), which
1312 Cell 166, 1308–1323, August 25, 2016
we termed BC5A–BC5D, as they expressed known BC5 makers

(Figure 4A) (Duan et al., 2014; Haverkamp et al., 2003; Hellmer

et al., 2016; Wässle et al., 2009).

Using the lentivirus/FISH method, we found that BC5A–BC5D

axons all arborized in the sublamina characteristic of canonical
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Figure 3. BC1B Is a Non-canonical Bipolar Type

(A) Expression patterns of known BC and amacrine cell genes across BC1A, BC1B, and BC2 clusters, plus new BC1A and BC1B markers. Representation as in

Figure 1F.

(B) Pcdh17 (BC1Amarker) andWls (BC1Bmarker) label distinct populations of CFP-positive cells in theMitoP line. Pcdh17 labels cells with a bipolar morphology

positioned in the bipolar cell layer (BCL), whereasWls labels cells that lack an upward process and are positioned in the amacrine cell layer (ACL) (dashed gray line

denotes the division between these two layers). Insets show example cells with or without an upward process.

(C) BC1B cells (Vsx2+ Ppp1r17�) are distinct from nGnG amacrine cells (Vsx2� Ppp1r17+)

(D and E) Lentiviral labeling and Vsx2 immunostaining shows that BC1B cells lack an upward process and laminate in S1 (D), in contrast to other bipolar types that

laminate at a similar depth in the IPL (E).

(F) Representative drawings based on EM reconstructions of BC1A, BC2, and BC1B (the latter identified post hoc from Helmstaedter et al. [2013]).

(legend continued on next page)
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BC5s, but displayed morphological distinctions (Figures 4B–4E).

BC5A (Sox6+) and BC5B (Chrm2+), had narrow monostratified

axonal arbors, but only the former extended large dendritic

stalks to the OPL, a feature of the ultrastructurally defined

BC5A. BC5C (Slitrk5+) cells had bistratified axons. BC5D

(Lrrtm1+) cells had wide, thin arbors reminiscent of XBCs (Helm-

staedter et al., 2013).

We next analyzed five mouse lines that report on the expres-

sion of genes enriched in specific BC5 types (Kcng4-cre,

Kirrel3-GFP, Cntn5-tau-lacZ, Cdh9-lacZ, and Htr3a-GFP;

Figure 4A). In each case, results validated patterns pre-

dicted from Drop-seq (Figures 4F–4M). Moreover, bulk RNA

sequencing (RNA-seq) of GFP+ cells from the Htr3a-GFP line

confirmed the expression of markers from the BC5A and

BC5D but not BC5B/BC5C clusters (Figure 4N; STAR Methods).

Together, these results provide a definitive division of BC5 into

four groups and a set of transgenic lines with which they can

be marked.

BC8 and BC9 Identified through an Alternative
Unsupervised Method
ON BC8 and BC9 were the only known BC types that remained

unaccounted for, and no endogenous markers of either type

have been identified. Cluster 15 expressed markers of ON

cone BCs, but no known markers of specific BC types (Figures

1F and 5A). We asked whether Cluster 15 contained BC8 and/or

BC9. Cluster 15 was unique in comprising two visibly separate

lobes on the t-SNE map, suggesting the possibility of sub-pop-

ulations (Figures 1C and 5A). These clusters were distinguished

by applying the Infomap algorithm (Figure 1D), with 71 DE

genes (>2-fold expression difference FDR < 0.01). The most

specific marker for Cluster 15, Cpne9, was expressed exclu-

sively in one of the two putative sub-populations (Figure 5A).

Neither of the general ON BC markers, Grm6 or Isl1, exhibited

this bias.

These observations suggested that cluster 15 contains both

BC8 and BC9 cells, with Cpne9 marking one type. (Figures 2A

and 5A). To test this idea, we used the Thy1-Clomeleon-1

(Clm-1) line, previously described to label BC9 cells (Breuninger

et al., 2011; Haverkamp et al., 2005). BCs that expressed clome-

leon (a YFP/CFP fusion) were Cpne9+, indicating this to be a

marker for BC9 (Figure 5B). We also identified both Cpne9+

and Cpne9� cells with BC8/9-like morphology using the FISH/

lentiviral method (Figure 5C); likewise, two-color FISH identified

two populations ofSeripini1+ cells (amarker of both subclusters),

some Cpne9+ (BC9) and others Cpne9� (BC8) (Figure 5F).

Cpne9+ somas in retinal whole mount exhibit uniform spacing

(Figures 5D and 5E), consistent with this being a single

cell type. We conclude that Serpini1+ Cpne9� and Serpini1+

Cpne9+ BCs correspond to BC8 and BC9, respectively.

Taken together, our histological validation of a computation-

ally derived molecular taxonomy unifies molecular and morpho-

logical signatures of BCs (Figures 6A and 6B).
(G–I) BC1B cells lose their apical process and translocate to the ACL. (G) BC1B ce

have become unipolar. See representative images in (H) and diagram of develop

insets.

See also Figure S6.
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Transcriptional Programs Underlie Functional
Differences between BC Types
To gain insight into functional or developmental differences

among BC types, we tested genes driving the top principal com-

ponents for enriched functional categories as defined by Gene

Ontology (GO) (Wagner, 2015) (Figure 6C; Table S5). Top en-

riched categories included genes consistent with BC function

and development (p < 10�6), such as ‘‘axonogenesis’’ and

‘‘glutamate receptor signaling pathway.’’ These categories

exhibited modest differences between BC clusters. However

‘‘extracellular ligand-gated ion channel activity’’ was enriched

in OFF types reflecting their usage of ionotropic glutamate re-

ceptors, and ‘‘neuron migration’’ was moderately enriched in

BC1B, consistent with its translocation from the bipolar to the

amacrine cell layer. As expected, these categories differed sub-

stantially from those enriched in Müller glia and photoreceptors

(Figure S7A).

We next analyzed expression of genes that encode neuro-

transmitter receptors (Figures 6D and 6E). Patterns of glutamate

and acetylcholine receptors were noteworthy.

Glutamate Receptors

There are four main classes of synaptic glutamate receptors:

NMDA (Grin), AMPA (Gria), and Kainate (Grik), which are iono-

tropic (glutamate-gated channels), and metabotropic (Grm;

glutamate-activated G protein-coupled receptors). All BCs

respond to glutamate, which is released from photoreceptors

in the dark. OFF BCs use ionotropic receptors, likely of the

Grik category (Borghuis et al., 2014), that lead to depolarization

by glutamate; thus, they hyperpolarize in response to illumina-

tion. In contrast, ONBCs use themetabotropic receptor mGluR6

(Grm6), which leads to hyperpolarization by glutamate; thus,

they depolarize in response to illumination.

Patterns of glutamate receptors were generally consistent with

this prior knowledge (Figure 6D), but there were five exceptions.

First, BC1A showed little, if any, Grik-class receptor expression

(see also Ichinose and Hellmer, 2016; Puller et al., 2013).

Second, Gria2 was expressed by all cone BC types, including

BC1B, but not by RBCs. Third, Grin2b and 3a were detected

in several BC types, albeit at low levels. Fourth, Grm6 was ex-

pressed at much lower levels in BC5D than in other ON BCs, a

result we confirmed by in situ hybridization (Figures S7B–S7F).

Fifth, Trpm1, Gng13, and Nyx, which encode Grm6-associated

proteins, are expressed not only by ON BCs but also by some

OFF BCs (Figure 6D).

Acetylcholine Receptors

BC2, BC3A, and BC5 cells provide direct input to the direction-

selective circuit in the retina, synapsing with starburst amacrine

cells (SACs) and the ON-OFF direction-selective ganglion cells

(ooDSGCs) (Duan et al., 2014; Helmstaedter et al., 2013; Kim

et al., 2014). SACs are the sole source of acetylcholine (ACh) in

the retina, but the role of ACh in the mature retina is not well un-

derstood (Taylor and Smith, 2012). BC2 and BC3A both express

the nicotinic acetylcholine receptors Chrnb3 and Chrna6, and
lls (CFP+ Lhx3+) predominantly have a bipolar morphology at P6. By P17 most

mental events in (I). Scale bars indicate 20 mm for main panels and 10 mm for
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BC2 and BC5B express the muscarinic receptor Chrm2 (Fig-

ure 6E). This pattern raises the possibility that SACs provide

cholinergic feedback to the BCs that innervate them.

Other gene categories showed evidence of type-specific roles.

Several potassium channel subunits were expressed selec-

tively, including Kcnab1, Kcng4, Kcnj9, and Kcnk3. Numerous

transcription factors (TFs) were also differentially expressed,

including factors expressed in single (Fezf1, Ebf1, Irx3) or small

sets of types (Fezf2,Zfhx4,Vsx1,Six3,Nfib,Meis2,Nfia,Neurod2)

(Figure 6G). However, aside from the previously described Isl1

(Elshatory et al., 2007), wedid not findTFswhose expression cor-

relates strictly with the ON/OFF division or other subdivisions in

our dendrogram, indicating the importance of combinatorial

TF codes in regulating type-specific gene expression.

Finally, consistent with their role in establishing type-specific

connections and lamination patterns, genes encoding some

adhesion/recognition molecules showed expression in single

types (Ptprt, C1ql3, Kirrel3, Tpbg) or small sets of types

(Nxph1,Ntng1, Lsamp,Cdhr1). The cell surface receptor amyloid

beta A4 protein (App) appears to be a robust pan-cone BC

marker. Interestingly, genes from the same family typically had

unique or non-overlapping expression patterns across types

(Pcdh7, Pcdh9, Pcdh10, and Pcdh17, Ncam1 and Ncam2,

Slitrk5 and Slitrk6, Lrrtm1 and Lrrtm3, Fam19a3 and Fam19a4,

Cdh8, Cdh9, and Cdh11, and Cadm1–Cadm3) (Figure 6H). Sin-

gle-cell profiling at earlier time points (as circuits assemble) will

likely reveal additional, selectively expressed TFs and recogni-

tion molecules.

Fewer, Deeply Sequenced Single-Cell Libraries Do Not
Enable Better Classification
Given limited time and money, it is important to achieve an

optimal balance between the number of single-cell libraries

and the sequencing depth per library. We sequenced our

Drop-seq single-cell libraries at a shallow depth of 8,200 map-

ped reads per cell. For the 27,499 cells analyzed in this study,

this meant an ‘‘effective’’ combined library and sequencing

cost of $0.34/cell, including the cost of low-quality libraries

that were not analyzed.

Could we have derived a better classification had we

sequenced fewer cells at greater depth for equivalent cost? To

explore this, we collected GFP+ cells from the Vsx2-GFP line

and prepared 288 single-cell libraries using Smart-seq2, a near

full-length RNA-seq method (Picelli et al., 2014) as well as bulk

population libraries from �10,000 GFP+ cells (Figures 7A and
Figure 4. Four BC5 Types with Distinct Morphology and Gene Express

(A) Expression patterns of known and novel BC5 genes across BC5A–BC5D clus

(B–E) FISH + lentiviral labeling for BC5A–BC5D markers from (A). Insets show loc

lentivirus-labeled cells as in Figure 2.

(F–K) BC5 types labeled in transgenic lines that report on genes highlighted in (A).

co-localization in BC5A cells. (G)Kcng4-cre;Cdh9-lacZ retinal cross section labele

and PkarIIb� in Kirrel3-GFP retinas. GFP-low and PkarIIb+ cells correspond to B

spaced compared to a density matched random population. (I) Kcng4-cre;Htr

co-localization. (J) Kcng4-cre;stop-YFP;Cntn5-lacZ retinas labeled for YFP, lacZ

(L and M) Kcng4-cre;Cntn5-lacZ retinas infected with AAV-stop-GFP marks the m

are shown from the side (left) and en face (right). (M) GFP and lacZ labeling of axon

Choline acetyltransferase (ChAT) labeling of S2 and S4. Scale bars indicate 20 m

(N) Bulk RNA-seq of FAC-sorted Htr3a-GFP cells shows BC5A and BC5D marke
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7B). We analyzed 229 single cells that passed quality filters

(STAR Methods); they were sequenced to a median depth of

835,000 mapped reads per cell; the cumulative depth of these

229 libraries (mapped reads) was equivalent to 23,300 Drop-

seq libraries or �83% of our dataset. Gene expression profiles

averaged across Smart-seq2 single cells, Smart-seq2 bulk,

and Drop-seq libraries were highly correlated (Figures 7B and

7C). However, the per-cell effective library + sequencing cost

of the Smart-seq2 cells was $18 (553 greater than Drop-seq),

such that the overall cost of 229 single cells was equivalent

to �12,200 Drop-seq cells (excluding time considerations and

labor costs).

We assessed sensitivity of detection by computing the fraction

of cells in which a gene was detected as a function of its popu-

lation expression level. As expected, the higher sequencing

depth per cell in Smart-seq2 enabled better detection of lowly

expressed genes, compared to Drop-seq (Figure 7D). To test

whether this was related to sequencing depth or was a limitation

intrinsic to Drop-seq, such as low transcript capture on

beads, we re-sequenced �200 single-cell Drop-seq libraries at

503 greater depth (400,000 mapped reads per cell). Deeper

sequencing greatly improved the transcript detection efficiency

in Drop-seq libraries and was comparable to Smart-seq2 li-

braries downsampled to a similar depth (Figure 7D).

We next examined the performance of fewer, deeply

sequenced cells in cell type identification. Clustering the 229 sin-

gle cells using an approach similar to that used for the Drop-seq

data generated only eight clusters, many of which expressed

signatures of multiple BC types (Figure 7E; STAR Methods).

We classified individual cells within these clusters using a

random forest (RF) model (Figure 7E, labels) trained on Drop-

seq bipolar signatures (Figure S3D; STAR Methods). The pre-

dicted labels of individual cells showed that a majority of the

mixed clusters were comprised of BC pairs that were each

other’s closest relative (e.g., BC1A–BC1B, BC3B–BC4B, and

BC5B–BC5C). No cells were classified as BC3A or BC5D cells,

likely because they were too rare to be captured in the dataset

(1.7%–1.9% in Drop-seq data). In contrast, these type were

identified in Drop-seq datasets containing �5,000 shallow-

coverage cells (Figures S2N and S3A). These results suggest

that for the task of cell type identification greater sequencing

depth per cell is insufficient to compensate for the underrepre-

sentation of cell types.

Next, using the cell type labels assigned by the RF model,

we obtained the top 30 DE genes for each BC type in the
ion

ters. Representation as in Figure 1F.

alization of FISH within GFP+ cell body. Noise reduction was applied to GFP+

(F) Kcng4-cre;stop-YFP retina whole mounts labeled with GFP and Sox6 show

d for lacZ and cre show near complete co-localization. (H) BC5D cells are GFP+

C3B. (J) A density recovery profile (DRP) shows that BC5D cells are uniformly

3a-GFP retinal cross section labeled for GFP and cre show near complete

, and Nfia combinatorially mark BC5A–BC5C.

orphology BC5A (green and orange cells) and BC5D (cyan cell). (L) Terminals

stalks distinguishes BC5A (lacZ+) from BC5D (lacZ�). Dashed lines drawn from

m for main panels and 10 mm for insets.

rs robustly expressed, but BC5B and BC5C markers are absent.
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Figure 5. BC8 and BC9 Are Closely Related but Separable by Unsupervised Methods

(A) Amagnified view of cluster 15 on the tSNEmap in Figure 1C shows two subpopulations. Individual cells are colored by expression levels of ON cone BC genes

(Grm6, Isl1, Scgn) and Cluster 15 enriched genes (Cpne9, Spock3, Seripini1).

(B) BC9 cells labeled by the Clm-1 transgenic line are Cpne9+.

(C) Single cells labeled by lentivirus combined with FISH. Cpne9 is expressed in some but not all BCs with wide axonal arbors laminating at low IPL depth,

consistent with the presence of two populations, BC9 (Cpne9+) andBC8 (Cpne9�). Insets show FISH andGFP labeling of the cell body. Noise reduction applied to

GFP+ lentivirus-labeled cells as in Figure 2.

(D and E) Soma spacing in Cpne9-labeled retinal whole mounts is indicative of Cpne9 marking a single type. (E) shows a density recovery profile derived

from whole mount (D), revealing uniform spacing with an exclusion zone of 14.3 mm, which is absent in density matched simulations of randomly distributed,

non-overlapping cells of similar size.

(F) Retinal whole mounts with double FISH labeling for Cpne9 and Seripini1 reveals two populations, Cpne9+ Seripini1+ (BC9, indicated by solid outlines) and

Cpne9� Seripini+ (BC8, indicated by dashed outlines). Scale bars indicate 20 mm for main panels and 10 mm for insets.
Smart-seq2 data using a bimodal test (McDavid et al., 2013).

Sixty percent of these markers featured among the top 30 DE

genes found in the Drop-seq analysis (Figure 7F), suggesting

consistency between the results obtained from the Drop-seq

and Smart-seq2 libraries. The proportion of gene discrepancies

was larger for Smart-seq2 clusters with small numbers of cells,

suggesting that these might be false-positives.

To further test whether our ability to cluster Smart-seq2 data

was limited by numbers of cells, we prepared Smart-seq2 li-
braries of YFP-positive BCs from retinas of Kcng4-Cre mice

crossed to a stop-YFPCre-dependent reporter (STARMethods).

Unbiased clustering of 309 cells identified four large clusters in

the data, three of which corresponded to BC5A (n = 110),

BC5D (n = 60), and BC7 (n = 43) based on the RF model (Figures

7G–7I; labels), consistent with Kcng4 expression (Figure 1F).

A fourth cluster (n = 82) consisted of likely rod-BC5 doublets;

the RF model assigned classes for <10% of the cells in this

cluster.
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Together, these results demonstrate the importance of distrib-

uting a given number of reads over a large number of cells in

order to accurately resolve cell types.

DISCUSSION

We developed and applied an integrated strategy for building a

comprehensive validated atlas of cell types. Challenges included

(1) the need to harmonize different definitions of cell type (here,

molecular and morphological); (2) a population containing both

abundant and rare cell types; (3) theneed fora scalable and robust

computational approach; and (4) the need tooptimize thedepthof

profiling and the number of profiled cells, given fixed resources.

We showed that our classification is comprehensive in covering

all known mouse BC types and that associated transcriptional

profiles are accurate, identifying the majority of known markers

and new ones that we went on to validate. We also discovered

twoBCtypesnotpreviously identifiedandgeneratedanextensive

resource for future studies. Finally, we provide an experimental

andcomputational framework for similar studies in other systems.

BCs Are an Ideal Class for Cell Type Analysis
We used BCs to develop and test our strategy for several rea-

sons. First, BC types have been classified morphologically at

both light and electron microscopic levels (Helmstaedter et al.,

2013; Wässle et al., 2009). Second, BCs are readily accessible

by viral infection, and we employed lentiviral vectors for sparse,

random labeling of BCs; combined with FISH, this allowed us to

relate candidate marker expression to the morphologies of BC

types. Third, endogenous and transgenic markers were already

available for some BC types, aiding the assignment of cell clus-

ters to BC types and allowing us to assess the accuracy of

computational approaches at an early stage of the analysis.

BC Types, Markers, Factors, and Relationships
The discovery of BC1B illustrates the power of scRNA-seq.

BC1B cells appeared amacrine-like in morphology and position

and indeed may have been misclassified as amacrine cells

in previous studies. However, they display a typical bipolar

morphology during development and remain molecularly bipo-

lar-like in adulthood (Figure 3). Such morphological transitions

during development have precedents within the CNS. In the

mammalian cortex, for example, some pyramidal neurons retract

their apical dendrite and become spiny stellate neurons (Koester

and O’Leary, 1992). Such examples raise the possibility that

some morphology-based classifications of neuronal types will

be revised with the application of molecular profiling.
Figure 6. Drop-Seq Transcriptomes Provide Insights into BC Function

(A) Representative drawings of BC types validated in this study, drawn from EM

(B) Hierarchical clustering of BC clusters, similar to Figure 1G, now with ident

Figures 3, 4, and 5, respectively.

(C) Enrichment patterns of Gene Ontology (GO) categories in BC clusters based o

while columns correspond to random averages of single-cell gene expression

mitigate single-cell noise).

(D–H) Dotplots of functionally and developmentally relevant genes expressed b

pathway components. (E) Acetylcholine, GABA, and glycine receptors. (F) Pot

molecules. In (D)–(H), only genes expressed in >20% of cells in at least one BC c
Hierarchical clustering of BC types based on transcriptional

profiles provides insight into the relationships among BCs. The

two main distinctions among BC types are rod versus cone

BCs and ON versus OFF BCs. The former is associated with syn-

aptic input (predominantly from rod versus cone photorecep-

tors), while the latter distinguishes the signaling mechanism in

dendrites (metabotropic versus ionotropic; Figure 6D) and the

level of axonal stratification. The first split in the dendrogram

(Figure 6B) separates the rod from cone BCs, with a second split

separating ONcone fromOFF cone BCs. Thus, ON coneBCs are

more similar to OFF cone BCs than to ON rod BCs.

Grouping of cone BC clusters also shows that lamination

depth in the IPL correlates well with molecular relatedness.

Although BC5D uniquely shares a wide axonal arbor morphology

with BC8 and BC9, it does not show a close transcriptional relat-

edness to these types. Rather, the four clusters with cells that

co-laminate, BC5A–BC5D, were grouped together despite their

varied arbor morphologies (Figures 6A and 6B). Likewise, BC6–

BC9, which laminate lower in the IPL, were positioned together in

the dendrogram.

Onepossible exception to this rule isBC2.Despite sharing lami-

nation with BC1A and BC1B, BC2 did not cluster reliably with

these types, with only 70% of the bootstrap trials placing it in

the OFF BC branch. In a large proportion of the other trials it

was positioned in the ON branch next to BC6. Interestingly, BC2

expressesgenesencodingcomponentsof theON-typeglutamate

receptor signaling complex (Gng13, Nyx, and Trpm1) (Figure 6D).

Design Considerations for scRNA-Seq-Based Cell
Classification
Although each system will surely present its own challenges, we

believe our work presents a starting point for designing studies

aimed at classifying other heterogeneous tissues.

First, our success in classifying BCs using shallow-sequenced

Drop-seq libraries supports previous studies (Heimberg et al.,

2016; Jaitin et al., 2014; Macosko et al., 2015; Pollen et al.,

2014), which have noted that the majority of genes that account

for transcriptional variance between cell types are identifiable

by low coverage RNA-seq (10–50,000 reads per cell). To this

we add evidence that shallow sequencing can be used for

comprehensive classification. Drop-seq is also cost-effective:

At $0.34/cell, Drop-seq datasets of 13,938 cells ($4,739) enabled

better cell type classification than Smart-seq2 (229 cells 3 $18/

cell = $4,122) (Figures 7 and S2). However, more depth may be

required in systems where cell type distinctions are graded

(e.g., developing tissues), or when dynamic processes are being

monitored. An attractive strategy would be to first identify cell
reconstructions (Helmstaedter et al., 2013).

ities of the BC1s, BC5s, and BC8 and BC9 resolved based on results from

n the GO-PCA algorithm. Rows correspond to significantly enriched GO terms,

signatures arranged by cluster (200 per cluster, averaging was performed to

y BC types. Representation as in Figure 1F. (D) Glutamate receptors and ON

assium channel subunits. (G) Transcription factors. (H) Adhesion/recognition

luster are shown.
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Figure 7. Comparison of Drop-Seq with Smart-Seq2

(A) Bulk RNA-seq expression levels of 15,063 genes tightly correlate across two biological replicates (�10,000 cells each) processed using the Smart-seq2

method.

(B) Gene expression levels averaged across 229 single cells (three biological replicates) tightly correlate with the expression levels in the bulk libraries.

(C) Single-cell averaged expression levels of Vsx2-GFP cells (log(Transcripts-per-million + 1) units) correlate between Smart-seq2 and Drop-seq datasets

(D) Sensitivity of transcript detection in single-cell libraries as a function of Smart-seq2 bulk expression levels. Curves show results for Smart-seq2 (three

replicates), Drop-seq (six replicates), and deep-sequenced Drop-seq and downsampled Smart-seq2 data.

(E) Clustering and tSNE visualization of Smart-seq2 single-cell data. Each cell is labeled on the tSNE map by its random forest (RF) assigned cell type. The RF

model assigned one of 18 possible types including 14 BC types (1A-8/9), RBC, Müller glia (MG), Amacrine cells (A), rod photoreceptors (R), cone photoreceptors

(C), or unknown (N).

(legend continued on next page)
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types using large numbers of cells profiled at shallow depth and

then, if desired, re-sequence a subset at higher coverage for a

deeper analysis (Figure 7D).

Second, our analysis of downsampled Vsx2-GFP Drop-seq

and Smart-seq2 datasets (Figures 7, S2, and S3) underscores

the importance of large cell numbers for robust classification.

Retrospectively, we were able to resolve BC types occurring at

a frequency >200 cells in the Drop-seq datasets (Table S2).

Some non-BC types, like cone photoreceptors, were resolvable

at <50 cells per cluster, presumably because of their transcrip-

tional distinctness. Thus, the minimum number of cells needed

to resolve all cell types is a function of their frequency distribu-

tion, transcriptional distinctness, and depth of sequencing. In

particular, comparison of Vsx2-GFP Drop-seq and Smart-seq2

data shows that deeper sequencing does not enable better clas-

sification when cell numbers are low. For example, BC3B and

BC4 could not be resolved from each other in Smart-seq2 data

even though their proportions were higher in the Smart-seq2 da-

taset (4.4%, 3%) than in Drop-seq (2.9%, 1.4%). The computa-

tional challenges separating the two rarest BC types, BC8 and

BC9, in the Drop-seq data at various levels of cell downsampling

further underscores the need for large cell numbers in classifying

rare, related types.

Third, with the advance of multiplexing technologies and

decreasing sequencing costs, future studies will undoubtedly

profile larger numbers of cells at greater depth. Analysis of

such datasets will require scalable computational methods.

We tested six clustering methods, of which two, Louvain-Jac-

card (Blondel et al., 2008) and Infomap (Rosvall and Bergstrom,

2008), produced the most useful results. Both methods have an

approximately linear complexity with the number of cells, making

this approach promising for large scRNA-seq datasets in the

future. The tradeoff between the two methods (sensitivity versus

over-clustering) exposes the challenges inherent to clustering

and suggests that future studies aimed at classifying less well-

characterized regions of the brain would benefit from analyzing

data using multiple clustering approaches, followed by addi-

tional validations of putative types.

What Defines a Cell Type?
Most neurobiologists agree that classifying the cell types of the

nervous system is essential for understanding how the brain

develops, functions, and malfunctions. There is less agreement,

however, on how to define a cell type. InCaenorhabditis elegans,

the task is straightforward: each neuron can be viewed as a type,

with a unique lineage, position, pattern of connectivity, molecular

profile, and functions. In the vertebrate nervous system, with

orders of magnitude more neurons (�1011 in the human brain),

it is more difficult to define a type. One hopes for a taxonomy

that meaningfully reconciles morphological, physiological, mo-

lecular, and perhaps other criteria (e.g., position, connectivity).
(F) Top 30 differentially expressed (DE) genes in each BC type computed using a p

with fewer than three cells in the data were excluded. Black bars on the right mar

Drop-seq clusters (Table S3).

(G) tSNE visualization of Kcng4-GFP Smart-seq2 data (309 single cells). Each ce

(H and I) Violin plots showing expression of known and novel BC5A-D markers (

See also Figure S7 and Table S5.
It is encouraging that correspondence among these criteria

seems to be the rule for BCs. It is unclear, however, whether dis-

tinctions will be as crisp for other populations, such as neurons

of the cerebral cortex, where activity and other factors can pro-

foundly affect neuronal properties (Spitzer, 2015), and intermedi-

ate types may exist (Tasic et al., 2016). Indeed, molecular classifi-

cations are likely to fail if they do not take account of activity- and

state-dependent transcriptional programs.Nonetheless,weargue

that comprehensive transcriptomic classification using large

numbers of cells, coupled with extensive validation, provides a

useful starting point for generating neuronal taxonomies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-b-galactosidase DSHB CAT#40-1a; RRID: AB_2314509

Rabbit polyclonal anti-b-galactosidase Duan et al., 2014 Generated in J.R.S. lab

Rabbit polyclonal anti-Calretinin Millipore CAT#AB5054; RRID:AB_2068506

Mouse monoclonal anti-Calretinin (6B8.2) Millipore CAT#MAB1568; RRID:AB_94259

Goat polyclonal anti- choline acetyltransferase Millipore CAT#AB144P: RRID:AB_11214092

Goat polyclonal anti-Chx10 (N-18) Santa Cruz Biotechnology CAT#sc-21690: RRID:AB_2216006

Sheep polyclonal anti-Chx10 Exalpha CAT#X1180P: RRID:AB_2314191

Mouse monoclonal anti-Cre (2D8) Millipore CAT#AB3120: RRID:AB_2085748

Chicken polyclonal anti-GFP Abcam CAT#ab13970: RRID:AB_300798

Rabbit polyclonal anti-Lhx3 Sharma et al., 1998 Gift of S. Pfaff, Salk Institute

Rabbit polyclonal anti-mCherry Krishnaswamy et al., 2015 Generated in J.R.S. lab

Rabbit polyclonal anti-Nfia Active Motif CAT#39397

Rabbit polyclonal anti-Otx2 Millipore CAT#AB9566: RRID:AB_2157186

Mouse monoclonal anti-PkarIIb BD Bioscience CAT#610625: RRID:AB_397957

Rabbit polyclonal anti-PKCa Sigma CAT#P4334: RRID:AB_477345

Rabbit polyclonal anti-Ppp1r17 Atlas Antibodies CAT#HPA047819

Mouse monoclonal anti-Syt2 ZIRC CAT#Znp-1: RRID:AB_10013783

Rat anti-mouse monoclonal CD90.2

(Thy-1.2) PE-Cyanine7

Affymetrix CAT#25-0902-81: RRID:AB_469641

Chemicals, Peptides, and Recombinant Proteins

Hank’s balanced salt solution (HBSS) Thermo Fisher CAT#14170-112

Papain Worthington CAT#LS003126

DMEM Thermo Fisher CAT#11995-065

BSA Sigma CAT#A8806

TCL Buffer QIAGEN CAT#1031576

1% 2-mercaptoethanol Sigma CAT#63689

Ovomucoid solution Worthington CAT#LS003087

Critical Commercial Assays

NexteraXT Illumina CAT#FC-131-1024

Ovation RNA-seq system V2 Nugen CAT#7102-32

RNeasy Mini Kit QIAGEN CAT#74104

RNAclean SPRI Beckman Coulter Genomics CAT#A63987

RNAlater ThermoFisher CAT#AM7024

ARCTURUS PicoPure columns ThermoFisher CAT#KIT0204

Deposited Data

Raw data files for RNA-sequencing NCBI Gene Expression Omnibus GSE81905

Experimental Models: Organisms/Strains

Mouse: Tg(Chx10-EGFP/cre,-ALPP)2Clc Constance Cepko (Rowan and

Cepko, 2004)

aRRID:IMSR_JAX:005105

Mouse: B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J Kevin Staley (Berglund et al., 2006) RRID:IMSR_JAX:013161

Mouse: Gustducin-GFP (Tg(GUS8.4GFP)) Constance Cepko (Huang et al., 2003;

Huang et al., 1999)

N/A

Mouse: Kirrel3tm1.1Jfcl Jean-François Cloutier

(Prince et al., 2013)

RRID:MGI_5517700

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Kcng4tm1.1(cre)Jrs Joshua Sanes (Duan et al., 2014) N/A

Mouse: Thy1-stop-YFP Line#1 Joshua Sanes (Buffelli et al., 2003) N/A

Mouse: Cntn5tm1Kwat Joshua Sanes (Li et al., 2003) RRID:MGI_3051993

Mouse: Ccktm1.1(cre)Zjh David Ginty (Taniguchi et al., 2011) RRID:IMSR_JAX:012706

Mouse: Thy1-mitoCFP-P (MitoP) Joshua Sanes (Misgeld et al., 2007)

Mouse: Fezf1tm1.1(cre/folA)Hze Allen Brain Research Institute RRID:IMSR_JAX:025110

Mouse: Gt(ROSA)26Sortm14(CAG-tdTomato)Hze Allen Brain Research Institute RRID:IMSR_JAX:007914

Mouse: Tg(Htr3a-EGFP)#aShkp Constance Cepko (Haverkamp

et al., 2009)

N/A

Mouse: Cdh9LacZ Joshua Sanes (Duan et al., 2014) N/A

Recombinant DNA

FChxVGW (Chx10-GFP lentivirus) This paper N/A

AAV9.hEF1a.lox.TagBFP.lox.eYFP.lox.WPRE.hGH-

InvBYF (titer: 1e12)

Penn Vector Core (Cai et al., 2013) AV-9-PV2453

Sequence-Based Reagents

Smart-seq2 reagents Picelli et al., 2014 N/A

Drop-seq beads ChemGenes Macosko201110

Drop-seq reagents Macosko et al., 2015 N/A

See table below and in STAR Methods and Table S1

for list of primers used in Drop-seq

N/A

Software and Algorithms

Zen http://www.zeiss.com/microscopy/en_

us/products/microscope-software/zen.html;

RRID:SCR_013672

Imaris http://www.bitplane.com/imaris/imaris;

RRID:SCR_007370

ImageJ http://rsb.info.nih.gov/ij/index.html;

RRID:SCR_003070

Pairwise stitching ImageJ plugin Preibisch et al., 2009 N/A

WinDRP http://wvad.mpimf-heidelberg.mpg.de/

abteilungen/biomedizinischeOptik/software/

WinDRP/index.html

STAR (v2.4.0a) Dobin et al., 2013 https://github.com/alexdobin/STAR

Drop-seq_tools (v1.12) Macosko et al., 2015 http://mccarrolllab.com/dropseq/

Picard Tools http://broadinstitute.github.io/picard/

Samtools http://samtools.sourceforge.net/

ComBat (Batch Correction) Johnson et al., 2007 R package sva

PCA, clustering, differential expression and

Random Forest Classification

This paper (described in the

STAR Methods text)

R source code class.R

t-distributed Stochastic Neighbor Embedding van der Maaten and Hinton, 2008 https://lvdmaaten.github.io/tsne/

RSEM (v1.2.29) Li and Dewey, 2011 http://deweylab.github.io/RSEM/

Bowtie2 (v2.2.7) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

GO-PCA Wagner, 2015 https://github.com/flo-compbio/gopca
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Joshua R. Sanes

(sanesj@mcb.harvard.edu).
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice
All animal experiments were approved by the Institutional Animal Care and Use Committees (IACUC) at Harvard University. Mice

were maintained in a specific pathogen free facility under standard housing conditions with continuous access to food and water.

All RNaseq experiments were carried out at post natal age (P) 17. Histological studies used P17-60 mice unless indicated otherwise.

Male and female mice were used across different experiments. None of the mice had noticeable health or immune status abnormal-

ities, and were not subject to prior procedures. The genotype of mice are described where appropriate.

The following mouse lines were used:

1. Tg(Chx10-EGFP/cre,-ALPP)2Clc transgenic mice (Vsx2-GFP hereafter) were bred for two generations to CD1 (Charles River)

and used for FACS experiments of GFP-positive cells (Rowan and Cepko, 2004).

2. Transgenic Clomeleon-1 (CLM1) mice, which encode a topaz-cyan fusion fluorescent indicator protein under control of a

Thy1 promoter, were used to visualize blue cone BCs (gift of Dr. Kevin Staley) (Berglund et al., 2006).

3. Transgenic Gustducin-GFP (Tg(GUS8.4GFP)) mice were used to identify BC7 cells (Huang et al., 1999, 2003).

4. A knockin of membrane localized EGFP to exon 1 of Kirrel3 (Kirrel3tm1.1Jfcl) was used at P21 to visualize BC5D cells (gift of

Dr. Jean-François Cloutier) (Prince et al., 2013).

5,6. Kcng4tm1.1(cre)Jrs mice (Duan et al., 2014) were crossed to the cre-dependent reporter Thy1-stop-YFP Line#1 (Buffelli et al.,

2003) and used for FACS experiments of YFP-positive cells for single-cell Smart-seq2 and immunohistochemistry (IHC) (here-

after Kcng4-cre;stop-YFP).

7. Mice expressing tau-lacZ under the endogenous Cntn5 locus (Cntn5tm1Kwat) and used for AAV-stop-GFP infections at P3 or

IHC at P113 (Li et al., 2003).

8. Ccktm1.1(cre)Zjh mice were used for AAV-stop-GFP infections at P0 (gift of Dr. David Ginty) (Taniguchi et al., 2011).

9. Thy1-mitoCFP-P (MitoP) mice express CFP under the control of a Thy1 promoter in neuronal subsets and labels BC1A, BC1B,

and nGnG amacrine cells (Kay et al., 2011; Misgeld et al., 2007; Schubert et al., 2008). These mice were used for FISH and/or

IHC at P6, 8, 11, 17, and P100.

10,11. BC1B cells were also visualized by IHC at P56 using Fezf1tm1.1(cre/folA)Hze mice crossed to a td-Tomato cre-reporter Gt(ROSA)

26Sortm14(CAG-tdTomato)Hze (Madisen et al., 2010) (gift of the Allen Brain Research Institute).

12. Transgenic mice expressing EGFP under a Htr3a promoter (Tg(Htr3a-EGFP)#aShkp) were used for FACS followed by bulk

RNA-seq (Haverkamp et al., 2009). These mice were also crossed to Kcng4tm1.1(cre)Jrs and retinas were used for IHC at P20.

13. Mice with lacZ knocked-in to the Cdh9 locus were crossed to Kcng4tm1.1(cre)Jrs mice and used for IHC at P20 (Duan et al.,

2014).
METHOD DETAILS

RNA-Sequencing
Isolation of Cells for Sequencing

For Drop-seq experiments using the Vsx2-GFP line, retinas were dissected in Hank’s balanced salt solution (HBSS) and promptly

dissociated using an accelerated DNase-free dissociation protocol (Siegert et al., 2012) with minor modifications. Papain (Worthing-

ton, LS003126) was removed with one wash in 10% FBS in HBSS followed by one wash in DMEM, after which retinas were placed in

DMEM containing 0.4%BSA (Sigma, A8806), dissociated by trituration, passed through a 35mm cell strainer, and placed on ice. Pro-

pidium Iodide (0.01 mg/mL) was added as a dead cell stain. Cells from Vsx2-GFP negative littermates were used to determine back-

ground fluorescence levels, and cells above this threshold from Vsx2-GFP positive animals were collected using FACS into PBS plus

0.1% BSA at a concentration of 100 cells/ml and 1 ml aliquots were used as input to the Drop-seq protocol. Cells were processed for

Drop-seq within �30 min of collection.

For Smart-seq2 experiments using the Vsx2-GFP line, three individual retinas from two animals were dissected, dissociated, and

FAC sorted as above. Single cells from each retina were collected into separate 96-well plates with 5 ml lysis buffer comprised of

Buffer TCL (QIAGEN 1031576) plus 1% 2-mercaptoethanol (Sigma 63689). We also collected �10,000 cells from each retina into

350 ml lysis buffer to serve as population RNA-seq controls. All samples were immediately frozen at �80�C.
To identify BC types marked by the Kcng4-cre line, mice were crossed to the cre-dependent reporter Thy1-stop-YFP and YFP-

positive single cells were FAC sorted as described above in the Vsx2-GFP Smart-seq2 experiments, with some minor differences

in retinal dissociation. Briefly, individual retinas from two P17 Kcng4-cre;stop-YFP mice were dissected in ice-cold HBSS, digested

with papain for 5 min, washed with Ovomucoid solution (Worthington, LS003087) to inactivate papain, dissociated by manual tritu-

ration, and passed through a 40 mmcell strainer. To exclude retinal ganglion cells (RGCs) that are alsomarked inKcng4-cre;stop-YFP

retinas (Duan et al., 2015) dissociated cells were incubated with a pan-RGC cell surface marker, anti-mouse CD90.2 (Thy-1.2) PE-

Cyanine7 (Affymetrix, 25-0902-81) (Kay et al., 2012). During FAC sorting, only YFP+ Cy7- BCs were collected, and YFP+ Cy7+ RGCs

were excluded.
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Drop-Seq Procedure

Drop-seq was performed largely as described previously (Macosko et al., 2015). Briefly, cells were diluted to an estimated final

droplet occupancy of 0.05, and co-encapsulated in droplets with barcoded beads, which were diluted to an estimated final droplet

occupancy of 0.06. The beads were purchased from ChemGenes Corporation, Wilmington MA (catalog number Macosko201110).

Individual droplet aliquots of 2ml of aqueous volume (1ml each of cells and beads) were broken by perfluorooctanol, following which

beads were harvested, and hybridized RNAwas reverse transcribed. Populations of 2,000 beads (�100 cells) were separately ampli-

fied for 14 cycles of PCR (primers, chemistry, and cycle conditions identical to those previously described) and pairs of PCR products

were co-purified by the addition of 0.6x AMPure XP beads (Agencourt).

A total of six replicates were prepared from two experimental batches (Batch 1 and Batch 2) of FAC sorted Vsx2-GFP positive cells

on different days. For each batch, retinas from multiple littermates were pooled together. Batch 1 consisted of cells from 5 mice,

whose cells were divided into 4 replicates and Batch 2 consisted of 4 mice, whose cells were split into 2 replicates. Each replicate

was collected by Drop-seq from 1ml FAC sorted GFP-positive cells pooled frommultiple Vsx2-GFPmice. For Batch 1 replicates 1-4,

cDNA from an estimated 5,400 cells were prepared and tagmented by Nextera XT using 600 pg of cDNA input, and the custom

primers P5_TSO_Hybrid and
Template_Switch_Oligo AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

TSO_PCR AAGCAGTGGTATCAACGCAGAGT

P5-TSO_Hybrid AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C

Nextera_N701 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG

Read1CustomSeqB GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC
Nextera_N701 (see table above). For Batch 2 replicates 1-2, cDNA from an estimated 11,700 cells was used as input into the

Nextera XT tagmentation. Each replicate was separately sequenced on the Illumina NextSeq 500 using 1.8 pM in a volume of

1.3 ml HT1, and 3 ml of 0.3 mM Read1CustSeqB (see table below) for priming of read 1. Read 1 was 20 bp; read 2 (paired

end) was 60 bp.

To sequence a smaller number of Drop-seq libraries at a greater depth (Figure 7D), amplified cDNA from approximately 200 single-

cell profiles from replicate 4 of Batch 1 was tagmented by the above Nextera XT protocol. This library was sequenced in a separate

Illumina NextSeq 500 run using the same recipe as above.

Plate-Based RNA-Seq Experiments

For preparation of single-cell libraries from 96-well plates (for Vsx2-GFP and Kcng4-cre;stop-YFP cells), we thawed the cells and pu-

rified them with 2.2x RNAClean SPRI beads (Beckman Coulter Genomics,) without final elution. The RNA captured beads were air-

dried and processed immediately for cDNA synthesis.We performed Smart-seq2 following the published protocol (Picelli et al., 2014)

withminormodifications in the reverse transcription (RT) step (M.K., unpublished data). Wemade 25 ml reactionmix for each PCR and

performed 21 cycles for cDNA amplification. We used 0.075 ng cDNA of each cell and 1/4 of the standard Illumina NexteraXT reaction

volume in both the tagmentation and final PCR amplification steps.

For the bulk RNA samples from the Vsx2-GFP line, we purified total RNA using the RNeasy Mini Kit (QIAGEN, 74104) with the in-

column DNase treatment step. We used 1 ng total RNA and made Smart-seq2 libraries as for the single cells described as above,

except only 12 cycles PCR for cDNA amplification.

We pooled the 288 single-cell libraries and 3 bulk sample libraries from the Vsx2-GFP line, and sequenced 50 3 25 paired-end

reads using a single kit on the NextSeq500 instrument. The 396 Kcng4-cre single-cell libraries were sequenced on two lanes of

the HiSeq2500 instrument with 50bp single-end reads (192 libraries per lane).

For bulk sequencing experiments using the Htr3a-GFP line we collected 15,000 GFP-positive cells into RNAlater (ThermoFisher,

AM7024) in two replicates. RNA was purified using ARCTURUS PicoPure columns (ThermoFisher, KIT0204). Reverse transcription

and cDNA amplification was performed using the Ovation RNA-seq system V2 (Nugen, 7102-32).

Cost-Model for Drop-Seq and Smart-Seq2

Drop-Seq. The 45,000 cells profiled usingDrop-seqwere sequenced on six lanes of Next-seq (�8,200mapped reads per cell). Based

on a library generation cost of 6c / cell and $1,100 per Next-seq kit, the cost of 45,000 single-cell libraries was $9,300. For 27,499 cells

that passed QC filters, this yielded an effective per-cell cost of 34c / cell.

Smart-Seq2. The 288 cells profiled using Drop-seq were sequenced on a single lane of Next-seq (�835,000 mapped reads per

cell). Based on a library generation cost of $10.27 / cell, the cost of 288 single-cell libraries was $4,058, yielding a cost of $17.8/

cell for the 229 cells that passed QC filters.

The effective cost of sequencing 27,499 Drop-seq libraries to an equivalent depth of our Smart-seq2 libraries is $23.5/cell (100x

deeper), slightly larger than the cost of a Smart-seq2 library, because a higher proportion of reads are lost in Drop-seq to barcode
Cell 166, 1308–1323.e1–e17, August 25, 2016 e4



errors and cellular debris. We note, however, that this calculation does not take into account labor costs and preparation time, both of

can be substantially higher for Smart-seq2 compared to Drop-seq for an equivalent number of libraries.

Histological Methods
Probe Generation and Fluorescent In Situ Hybridization

Probe templates were generated using cDNA derived from P17 CD1 mouse retina following RNA extraction and reverse transcrip-

tion with Superscript III (ThermoFisher, 18080051). Antisense probes were generated by nested PCR, with the second PCR using a

reverse primer with a T7 sequence adaptor to permit in vitro transcription (see Table S4 for primer sequences). DIG rUTP (Roche,

11277073910) was used for synthesis of probes for all single FISH experiments, and DNP rUTP (Perkin Elmer, NEL555001EA) was

used for double FISH probes. FISH on sectioned tissues was performed as described (Trimarchi et al., 2007), with modifications.

Freshly dissected retinas were fixed in 4% PFA in PBS at room temperature for 30 min and immediately embedded in 1:1 30%

sucrose:OCT. Sections were adhered to Superfrost slides, treated with 1.5 mg/ml of proteinase K (NEB, P8107S) and then post-

fixed and treated with acetic anhydride for deacetylation. Probe detection was performed with anti-DIG HRP (1:750) or anti-DNP

HRP (1:200) followed by tyramide amplification. Detection of protein epitopes was performed following probe detection.

Antibodies were diluted in block consisting of 3% donkey serum (Jackson, 017-000-121), 1% BSA, and 0.1% Triton-X in PBS

at concentrations of 1:1000 (anti-Calretinin and anti-PkarIIb), 1:500 (anti-GFP), and 1:1500 (anti-PKCa) (See below for antibody

information). For whole mount FISH, retinas of CD1 mice (age P25) were fixed in 4% PFA, freeze-thawed in 30% sucrose, and

then treated with PBS + 0.3% Triton-X for 30 min prior to proteinase K treatment (5 mg/ml). Here, blocking steps were performed

with Triton-x (0.3%).

Modified Lentivirus for Single BC Labeling

The FUGW lentiviral genome plasmid (Lois et al., 2002) was used as the backbone to insert an element upstream of the Vsx2 (Chx10)

gene that drives expression in BCs. This element is the chicken homolog of a previously described mouse enhancer (Emerson and

Cepko, 2011), and was PCR amplified from genomic DNA using primers (50TTAAGATAACGTACACACACAGCGT30 and

50CGAGTAAAATGTCTTCCCCGCAGC30) and placed upstream of an SV40 promoter followed by GFP (amplified from Addgene

plasmid #18808) (Kim et al., 2008a). We call this plasmid FChxVGW. Virus was generated by transfection of 293T cells with the

FChxVGW genome plasmid, pspax2 packaging plasmid (Addgene #12260) and an envelope expressing plasmid, CMV-VSV-G.

10 mg of DNAwas transfected per 10 cmplate, in a plasmid ratio of 6:3:1 genome:packaging:envelope, and 48 and 72 hr supernatants

were concentrated by ultracentrifugation. CD1 pups were injected subretinally at P1 and infected retinas were harvested at P17-P20

for FISH and IHC.

Cre-Dependent AAV for Single BC Labeling

Sparse labeling of BCswas also achieved using an adeno-associated virus (AAV) expressing fluorescent proteins in a cre-dependent

manner. Brainbow virus AAV9.hEF1a.lox.TagBFP.lox.eYFP.lox.WPRE.hGH-InvBYF (titer: 1e12) (Penn Vector Core, AV-9-PV2453)

(Cai et al., 2013) was injected into the sub-retinal space of Kcng4-cre;Cntn5-tau-lacZ and Cck-cre newborn mouse pups, and

eyes were collected three weeks later and retinas dissected out and either maintained as retinal whole-mounts or cryosections prior

to IHC.

Immunohistochemistry

Animals were given a lethal dose of sodium pentobarbital (120 mg/kg) (MWI, 710101) and either enucleated immediately or perfused

intracardially with 4%PFA. Eyeswere removed and fixed in PFA for 15-30min. Following dissection, retinas were either kept whole or

immersed in 30% sucrose overnight prior to freezing in TFM (EMS, 72592) and cryosectioning at 20 mm. Immunostaining of retinal

whole-mounts and cryosections was conducted as described previously (Duan et al., 2014; Krishnaswamy et al., 2015). Primary

antibodies used: mouse anti-b-galactosidase (DSHB, 40-1a), rabbit anti-b-galactosidase (Duan et al., 2014), rabbit anti-Calretinin

(Millipore, AB5054), mouse anti-Calretinin (Milipore, AB1568), goat anti-ChAT (Milipore, AB144P), goat anti-Chx10 (Santa Cruz

Biotechnology, 21690), sheep anti-Chx10 (Exalpha, X118OP), mouse anti-Cre (Milipore, AB3120), chicken anti-GFP (Abcam,

ab13790), rabbit anti-Lhx3 (gift of Dr. Sam Pfaff) (Sharma et al., 1998), rabbit anti-mCherry (Krishnaswamy et al., 2015), rabbit

anti-Nfia (Active Motif, 39397), Rabbit anti-Otx2 (Millipore, AB9566), mouse anti-PkarIIb (BD Bioscience, 610625), rabbit anti-PKC

(Sigma, P4334), rabbit anti-Ppp1r17 (Atlas Antibodies, HPA047819), mouse anti-Syt2 (ZIRC, Znp-1). All secondary antibodies

used were purchased from either Invitrogen or Jackson ImmunoResearch.

Image Collection, Processing, and Analysis

Images were collected using several scanning laser confocal microscopes, including an Olympus Fluoview 1000, Ziess LSM 710,

or Ziess LSM 780. ImageJ, Zen, and Imaris software were used to generate maximum projections and rotations of image stacks,

and Adobe Photoshop CC was used for adjustments to brightness and contrast. ImageJ was also used for noise reduction. IHC

for GFP following FISH occasionally caused the appearance of bright puncta. These background speckles obscured the visual-

ization of lentivirus labeled cells. Therefore, we applied the ‘Remove outliers’ noise filter process in ImageJ to the GFP channel

only in lentivirus+FISH images. This process replaces a pixel if it deviates from the median of the surrounding pixels by a

given value. A pixel radius of 3 or less and the default threshold of 50 were used to remove bright outliers. No aspects of

cell morphology were detectably obscured after applying the filter. The BC1B bipolar to unipolar transition was quantified

from MitoP retinal sections stitched together using the pairwise stitching plugin of ImageJ (Preibisch et al., 2009). WinDRP
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(http://wvad.mpimf-heidelberg.mpg.de/abteilungen/biomedizinischeOptik/software/WinDRP/index.html) was used to generate

density recovery profiles and calculate the effective radius for real and density matched random populations of BC5D and BC9.

Computational Methods for Drop-Seq Data
Preprocessing of Drop-Seq Data

Read Filtering and Alignment. Paired-end sequence reads were processed largely as described before (Macosko et al., 2015) with

an additional barcode correction step (see below). Briefly, the left read was used to infer the cell of origin based on the first 12

bases (the cell barcode or CB), and the molecule of origin based on the next 8 bases (Unique molecular Index or UMI). Reads

were first filtered to remove all pairs where either the CB or the UMI had one or more bases with quality score less than 10.

The right mate of each read pair (60 bp) was trimmed to remove any portion of the SMART adaptor sequence or large stretches

of polyA tails (6 consecutive bp or greater). The trimmed reads were then aligned to the mouse genome (version m38) using STAR

v2.4.0a (Dobin et al., 2013) with the default parameter settings. Reads mapping to exonic regions of genes as per the Ensembl

transcriptomic annotation (version 81) were recorded. Exonic reads that mapped to multiple locations or to the antisense strand

were discarded.

Correcting for Barcode Synthesis Errors. During the analysis of our experimental data, we noticed that our recently purchased

batch of beads contained a sizeable fraction of cell barcodes (�5%–10%) that shared the first 11 bases, but differed at the last

base. These CBs also had a very high fraction of ‘‘T’’ (> 95%) at the last position of the UMI (see figure below). We concluded

that these represented beads that were missing a single base of the CB, likely because they missed one of twelve split-and-pool

synthesis cycles. Thus, for these beads, the 20-bp barcode read would be expected to contain a mixed base at position 12 (the first

base of the UMI) and a fixed T at position 20 (the first base of the polyT segment). If uncorrected, this would lead to an overestimation

of the true number of cells in the data (i.e., reads that have arisen from the same cell would be split to different ‘‘virtual’’ cells, because

one position is not in fact part of the cell barcode, but rather the UMI).

To correct for this phenomenon, we first identified CBs with ‘‘fixed’’ UMI bases at position 12. If only the last UMI base is fixed

as a ‘‘T,’’ we collected all the reads carrying cell barcodes that had an identical sequence at the first 11 bases, and ‘‘merged’’

these barcodes together. Empirically, we found that in these barcodes, ‘‘A,’’ ‘‘G,’’ ‘‘C’’ and ‘‘T’’ occurred in roughly equal pro-

portions at base 12, consistent with our hypothesis that this was actually the first UMI base. We then made this the first UMI

base by inserting an ‘‘N’’ at CB position 12 (denoting the missing base), and trimmed off the ‘‘T’’ at the last UMI base. If any

other UMI base was fixed, all the reads carrying that CB were discarded. This resulted in a corrected set of cell barcodes

and UMIs that was used for the estimation of digital gene expression. 5%–10% of cell barcodes were corrected in this way

in all the six replicates.
Histogram of the fraction of ‘T’ bases in the last UMI position for each cell barcode. Data from replicate 1 of Batch 1 of Drop-seq

was used. For most cell barcodes (green), the fraction of ‘T’ at position 8 of the UMI barcode is drawn from a normal distribution

centered around 0.25, consistent with a uniform distribution for all 4 bases. For a small number of the cell barcodes (�5%), a fixation

of ‘T’ at the last UMI position is observed (blue).
Cell 166, 1308–1323.e1–e17, August 25, 2016 e6

http://wvad.mpimf-heidelberg.mpg.de/abteilungen/biomedizinischeOptik/software/WinDRP/index.html


A command line script to perform this correction has been made publicly available in the Drop-seq website (http://mccarrolllab.

com/dropseq/), and its implementation is described in the Drop-seq computational cookbook (http://mccarrolllab.com/wp-

content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf).

Digital Gene Expression. To distinguish cell barcodes that represent genuine transcriptomic libraries arising from cells, rather than

from beads never exposed to a cell’s lysate, we ordered the cell barcodes by the total number of transcripts per cell barcode and

estimated a ‘‘shoulder’’ in the corresponding plot, as described before (Macosko et al., 2015). All cell barcodes larger than this cutoff

were used in downstream analysis, while the remaining cell barcodes were discarded.

We then performed the following steps for every gene within every cell. The UMIs corresponding to all uniquely mapped sense

reads (for a given gene) were recorded, and UMIs within an edit distance of 1 (substitutions only) were collapsed, as described in

Macosko et al. (2015). We then counted the number of remaining unique UMIs and this was recorded as the expression count for

that particular gene in that particular cell. This resulted in a digital expression matrix (DGE) with genes as rows and cells as columns

that served as the starting point for clustering analysis.

Batch Correction, PCA Analysis, tSNE Visualization and Clustering

Filtering the Expression Matrix. The starting pool of 45,000 cells (5,400 cells per replicate in Batch 1 and 11,700 cells per replicate in

Batch 2) was first filtered to remove cells where less than 500 genes1 were detected, and where the proportion of the transcript

counts (i.e., UMIs) derived frommitochondrially encoded genes (e.g.,Mt-Rnr2,Mt-Co2 etc.) was greater than 10%.We then removed

genes that were detected in less than 30 cells, and also those that had fewer than 60 transcripts counts, summed across all the re-

tained cells. These filters resulted in 27,499 cells and 13,166 genes, which were considered for further analysis. From Batch 1, we

retained 3,055-3,851 cells from each of the four replicates. From Batch 2, we retained 7,129 cells and 6,383 cells from the two rep-

licates, respectively (Figure S1A; Table S1).

Among the retained cells, the median number of genes detected per cell was 810 (IQR 644-1033, Figure S1A, upper panel) and the

median number of transcripts counts was 1,192 (IQR 914-1607, Figure S1A, lower panel), and both these numbers were comparable

across the different experimental batches and replicates. The median number of transcriptome-mapped reads per cell was 8,200.

The median number of reads supporting each detected transcript was 4 (IQR 3-7), but this distribution was very wide (Figure S1B).

95% of non-zero gene-counts in the filtered matrix had a value less than or equal to 3 (75% 1’s, 16% 20s and 4% 30s), suggesting that

our data (given the shallow sequencing depth) primarily reflected presence/absence of transcripts and did not capture the full dy-

namic range for most transcripts (Figure S1C).

Transcript counts within each column of the 13,166 genes x 27,499 cell countmatrix were normalized to sum to themedian number

of transcripts per cell (1,192), resulting in normalized countsMij for gene i in cell j. For PCA and clustering, we used a log-transformed

expression matrix Eij = lnðMij + 1Þ.
QC Metrics. A list of quality metrics was obtained for the Drop-seq single-cell libraries using Samtools (http://samtools.

sourceforge.net/), Picard Tools (http://broadinstitute.github.io/picard/) and in-house scripts. For each single-cell library (identified

based on its Batch, replicate and a 12bp barcode), we calculated the total number of mapped reads (coding and UTR), the number

of genes detected per cell, percentage of the total number of reads assigned to the cell barcode that were from (1) coding regions (2)

UTRs (3) intronic regions (4) intergenic regions (5) ribosomal RNA, and (6) mitochondrially derived transcripts. These are summarized

in Table S1.

Batch Correction. Although the values of Eij between any two single cells correlated poorly, as expected (Figure S1D), the aver-

aged expression levels of genes and the average counts were highly correlated across the six replicates (Figures S1E–S1H).

However, we noted that the intra-batch correlations were slightly higher than the inter-batch correlations (Figures S1G and

S1H). While no differentially expressed genes were detected between any two replicates from the same batch (e.g., Figures

S1E and S1F), we detected 33 differentially expressed genes at an average expression fold change > 2 between the two batches

(FDR < 0.05), most of them expressed at very low levels (see table below). These genes included Xist (the most differentially

expressed), Tsix, Hopx and Eif2s3y, all of which are sex-related genes, and Egr1 and Jun, both early response genes to

stress and injury. These observations suggest that differences in the proportion of males and females in the two litters, and

differences in handling conditions between the two experiments, are therefore likely to contribute to these batch effects in

gene expression.
Gene p Value log-fold change (Batch 1 versus Batch 2)

Xist < 1e-6 �3.14

BC033916 < 1e-6 1.87

2810008D09Rik < 1e-6 1.65

2700089E24Rik < 1e-6 1.65

Smim10l1 < 1e-6 �1.58

Platr17 < 1e-6 �1.56

A930011O12Rik < 1e-6 1.52

(Continued on next page)
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Continued

Gene p Value log-fold change (Batch 1 versus Batch 2)

mt-Rnr2 < 1e-6 �1.37

Mir124a-1hg < 1e-6 �1.35

Hopx < 1e-6 1.34

Snhg20 < 1e-6 �1.29

Tsix < 1e-6 �1.29

Zfp638 < 1e-6 �1.24

Zfml < 1e-6 1.13

Eif2s3y < 1e-6 1.09

mt-Rnr1 < 1e-6 �0.99

RP23-102H7.9 < 1e-6 0.87

Rsrp1 < 1e-6 0.86

Eno1 < 1e-6 �0.86

Rpl26 < 1e-6 0.85

2510003E04Rik < 1e-6 0.85

Egr1 < 1e-6 �0.83

Jun < 1e-6 �0.82

Kif1bp < 1e-6 �0.80

Hes1 < 1e-6 �0.78

Gm29609 < 1e-6 0.76

NCBP2-AS2 < 1e-6 �0.74

Gm4792 < 1e-6 0.72

Prss22 < 1e-6 0.70

Sag < 1e-6 �0.70
Weperformed batch correction on the expressionmatrix Eij using the ComBat method (Johnson et al., 2007) as implemented in the

R package sva. ComBat was run using the default parametric adjustment mode, which was able to fit the empirical batch-related

variationswell according to the author’s recommended prescriptions (the non-parametric modemade slightly better fits, but required

more than 4 days running time, compared to less than 10 min for the parametric mode on an Intel(R) Xeon(R) CPU, 2.67GHz, 100 GB

of memory). The output was a corrected expression matrix Ec
ij , which was used for PCA and clustering described below after row

centering and scaling, resulting in a matrix E
c

ij .

Dimensionality Reduction Using PCA and Estimation of Significant PCs. The matrix E
c

ij was reduced using principal component

analysis (PCA) using the fast.prcomp function in R (package gmodels). PCA computes a low dimensional representation of the

high dimensional gene expression data by linearly projecting the expression vectors (columns of E
c

ij ) along basis vectors that succes-

sively maximize the captured variation in the data. The optimal basis vectors are expressed as linear combinations of the row vectors

(genes), and are called the ‘‘principal directions.’’ The principal directions can be ordered by their associated eigenvalues, which are

proportional to the amount of variance captured. The principal component scores (PCs) of each cell can be obtained by projecting its

expression vector along these principal directions. The PC scores of individual cells can be plotted as a scatter graph to visualize

cellular heterogeneity in the data along different PCs (representative scatters shown in Figure S1I).

We used a permutation test to identify those PCs that capture statistically significant correlated variation among the genes, which

cannot be attributed to random ‘‘noise.’’ Briefly, PCA was performed on 1000 randomized versions of the data, where in each

instance, all the rows of the original expression matrix (genes) were randomly and independently permuted. This procedure makes

the gene expression values uncorrelated, while maintaining the expression distribution of every gene as in the original dataset. The

distribution of eigenvalues of these random matrices agreed very well with the predictions of the Marchenko Pastur (MP) law (Mar-

chenko and Pastur, 1967) which also predicts theoretical upper and lower bounds on the null distribution of eigenvalues (Figure S1J,

lower panel). Specifically for a largeM xN randommatrix ðM; N[0Þ, whose entries are independent, identically-distributed random

variables with mean 0 and variance s2, the maximum eigenvalue l+ and the minimum eigenvalue l� satisfy the following criteria,

l± = s2
�
1±

ffiffiffi
m

p �2
(Equation 1)

Here, m= ðM=NÞðz0:486Þ and s= 1 because of the row scaling operation. The probability density function of eigenvalues PDFðlÞ
according to the MP law is given by,
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PDFðlÞ= 1

2ps2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl+ � lÞðl� l�Þ
p

lm
(Equation 2)

The values of l± and the overall shape of the PDF in our simulated randomized data agreed closely with the predictions of Equa-

tions 1 and 2 (Figure S1J, lower panel).

61 eigenvalues in our original dataset had eigenvalues larger than the 2.87, the maximum eigenvalue observed in the randomized

data (Figure S1J, upper panel). Since the MP law holds only in the asymptotic limit ðM;N/NÞ; we only considered the 37 PCs that

had eigenvalues larger than 3 (Figure S1J, upper panel, red arrows). The scores of each cell across the top 37 PCs were used for

clustering. PCA thus achieves a compression of the expression data from an initial dimensionality of 13,166 (# of genes) to 37

(# of selected PCs).

2-D Visualization Using tSNE. In order to visualize single-cell variation, we generated a two-dimensional non-linear embedding of

the cells using t-distributed Stochastic Neighbor Embedding or tSNE (van der Maaten and Hinton, 2008). The scores along the 37

significant PCs estimated above were used as input to the algorithm. tSNE finds two dimensional coordinates for each input data

point, such that the pairwise distances between data points in the high dimensional space is conserved in the low-dimensional

embedding (Figure S1K).We ran the python implementation of tSNE (https://lvdmaaten.github.io/tsne/) for 2500 steps after disabling

the initial PCA step and setting the perplexity parameter to 30. Since tSNE can produce different visualizations in different runs, we

ran it once on our full dataset, and used these coordinates only for visualization (i.e., not to identify cell clusters). This step is entirely

dispensable if one does not wish to visualize the clusters. We note here that exact tSNE computation has a computational complexity

that is O(N2) in the number of input cells, and took �2.5 days to finish on our dataset when run on an Intel(R) Xeon(R) CPU (2.67GHz,

100 GB of memory).

The cells separated into distinct point clouds in tSNE space that were not driven by batch effects (i.e., all point clouds were an

admixture of cells from all replicates). However, within some point clouds, there was a visible separation between cells from Batch

1 and Batch 2 (Figure S1K, color scheme same as Figure S1I), suggesting that ComBat did not perfectly correct for batch effects.

Graph Clustering and Robustness Analysis. To identify cell types in the data, we partitioned the cells into transcriptionally similar

clusters based on their scores along the thirty-seven significant PCs. We initially used the Louvain community detection method

(Blondel et al., 2008), which partitions an input graph tomaximize the ‘‘graphmodularity,’’ ametric that favors densely interconnected

communities and disfavors edges between communities. The Louvain algorithm consists of two steps. In the first step, the method

searches for small clusters that maximize the modularity locally. In the second step, it aggregates nodes belonging to the same com-

munity, and builds a new graph whose nodes are the aforementioned clusters. Themethod finds a local minimum of the graphmodu-

larity with a computational complexity that scales with the number of cells N as OðN log NÞ:We performed Louvain clustering using

the R package igraph.

The input to the algorithmwas a k-nearest neighbor (k-NN) graph on the data, where every cell is connected to each of its k nearest

neighbors determined based on Euclidean distance in PC-space (using the nn2 function of the RANN package). We weighted each

edge in the graph by the Jaccard overlap index of the neighborhood of the corresponding nodes i and j as follows,

Edgeði; jÞ=
��Neighborsi T Neighborsj

����Neighborsi S Neighborsj
��

Here i and j are nodes, and we refer to this method as ‘‘Louvain-Jaccard’’ in our comparisons below (to distinguish it from the

unweighted version, also tested below). While the Jaccard index been used in the past as a similarity measure in graphs, the

Louvain-Jaccard strategy has been recently used in studies of social networks (Matutano et al., 2014), and in the Phenograph algo-

rithm, which was developed to analyze mass cyotmetry data from leukemic cells (Levine et al., 2015). We computed the clusters

based on a k = 30 graph, but extensively evaluated the reproducibility of the output by bootstrapping experiments (below).

The Louvain-Jaccard method identified 30 clusters in our data, which were visualized on the tSNEmap by coloring each cell based

on its cluster identity (Figure S2A). It’s encouraging to see that the spatial organization of the cells on the tSNE map mirrors the clus-

tering output, given that the tSNE coordinates were not used to influence the clustering.

Reproducibility of Clusters.We then used a resampling approach to evaluate the reproducibility of the Louvain-Jaccard clustering.

We performed 500 perturbations on the data where in each realization, we,

1. Randomly selected 85% of the cells, and rebuilt the k-NN graph with a randomly chosen k �Uniform(15, 100).

2. Removed 5% of the edges, and added 5% spurious edges between randomly chosen cell pairs

3. Added multiplicative noise to each edge by multiplying the edge weight by a random scalar x, where x �Uniform(0.6, 1.66).

Clustering using the Louvain-Jaccard method was performed on each of these 500 graphs, and the output cluster labels were re-

corded. For each Louvain-Jaccard cluster k ( = 1, 2,., 30) on the original dataset (i.e., non-perturbed), we calculated two measures

of reproducibility – Stabilityk and Purityk (see Assessment of Cluster Stability And Purity for definitions). Stabilityk quantifies the extent

to which cells from original cluster k are found to cluster together in the randomized trials, and is a value ranging from 0 (randomly

distributed) to 1 (found in a single cluster) for each cluster. Low Stabilityk values can be indicative of under-clustering. In contrast

Purityk quantifies the extent to which cells from cluster k tend to form an exclusive cluster of their own, ranging from 0 (tend to cluster
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with other cells) to 1 (tend to cluster largely by themselves). Low Purityk values are indicative of over-clustering. We desire clusters

that have both high values of Stabilityk and Purityk .

All our clusters had high stability values (> 0.92) andmost of themajor clusters (1-20, ordered by size), containing > 96%of the data,

also had high purity values (Figure S2B). Control calculations wherein the initial assignments were randomly permuted (maintaining

the cluster sizes) yielded stability and purity values that were, on average, 10-fold lower. Closer examination revealed that some low

purity clusters were nearly transcriptionally identical to a closely related high purity cluster (e.g., cluster 18 versus cluster 1 in Fig-

ure S2A) save for 5-10 differentially expressed genes that are likely to reflect technical features (e.g., library size) or sex-related batch

effects that were not fully correct by ComBat. For example, clusters 1 and 3 both had a rod bipolar signature (Prkca+Car8+Scgn-

Apoe-) but were each enriched in cells from Batch 1 and Batch 2 respectively, indicating that batch correction using ComBat was

not perfect (Figure S1K). Indeed, the �10 differentially expressed genes between these two clusters featured Xist, Tsix,

BC033916, Ddx3y, Eif2s3y, Fos, Dusp etc. (see table above). Motivated by these observations, we decided to merge clusters that

did not show sufficient differential expression.

Merging Clusters Based on Differential Expression. We searched for differentially expressed ‘‘up’’ and ‘‘down’’ genes between

every pair of clusters using a nonparametric binomial test (see section Binomial test for differential expression). For each pair of clus-

ters A andB, we evaluated ‘‘n,’’ the number of statistically significant differentially expressed genes (FDR < 0.01), such that therewere

at least [n/2] genes upregulated in A and [n/2] downregulated genes in A, with respect to B. The two-way condition was imposed to

avoid subdivision of clusters based on transcriptome quality, although the latter effect was not very prevalent in our dataset. Only

genes that satisfied two conditions were considered: (1) Detection in greater than 20% of the cells in at least one of the two clusters

(see Note below); and (2) A minimum 2-fold effect size. Here, the effect size was defined as the ratio of the proportion of cells in which

the marker was detected between the two clusters (e.g., if gene X is detected in 40% of the cells in cluster A, and 5% of the cells in

cluster B, its effect size (A/B) is 8).

The distribution of the number of statistically significant differentially expressed genes ‘‘n’’ between each cluster pair exhibited a

‘‘tail’’ at low values (Figure S2C), likely reflecting effects of library size, strain or biological variation with a type (e.g., cell state). Based

on this, we decided to merge every pair of clusters that had fewer than 50 differentially expressed genes each at a minimum effect

size of 2 (minimum 25 up and 25 down, FDR < 0.01). We iteratively merged 4 pairs of clusters until all remaining clusters satisfied this

criterion, resulting in 26 clusters (Figure S2D). Each pair of the clusters that remained had, on average, 418 differentially expressed

genes.

We then tentatively assigned each cluster to a retinal type based on the presence/absence of known markers. We briefly describe

the logic behind some of these assignments in Table S2. Clusters 1 and 3-15 were assigned to BC types as they robustly expressed

Vsx2 (the marker used for FACS enrichment) and Otx2. Cluster 1 was identified as rod bipolar cells (Prkca+Scgn-) and Clusters 3-15

were identified as cone bipolar cell types (Prkca-Vsx2+), and considered for further validation after assigning each of these clusters to

a BC type based on prior knowledge (described in Table S2 in detail). Cluster 2 was identified as Muller Glia (Apoe+Glul+Rlbp1+).

Cluster 16 consisted of amacrine cells (Pax6+Tfap2a+). Cluster 17-19, 21 expressed signatures of multiple retinal types (including

some of the top genes enriched in clusters 1-15), and considering their low frequency, were annotated as doublets (Table S2). Cluster

20 and 22 consisted of rod photoreceptors (Rho+Pdc+) and cone photoreceptors (Arr3+Opn1sw+). Clusters 23-26, collectively ac-

counting for < 0.5% of the cells, however, expressed non-BC signatures, that we were not able to assign to known types. We did not

consider these clusters for validation as based on their frequency such cells would be expected to have extremely wide arbors, and

BCs with such morphology have been ruled out by ultrastructural studies till date.

We then compared each of the 26 clusters with the other clusters to identify cluster-specific genes using the binomial test (section

Binomial test for differential expression). Genes detected in a significantly higher proportion of cells in a cluster compared to the re-

maining clusters (> 2 fold, FDR < 0.01) were ordered by the logarithm of their effect size, and considered for experimental validation

(Table S3).

The above test was constructed to find genes that exhibit a binary (ON/OFF) pattern of expression (see section Binomial test for

differential expression, and footnote 3), we used an alternative differential expression test (McDavid et al., 2013) to find ubiquitously

detected genes that nonetheless exhibited a quantitative expression difference between clusters (results in a separate worksheet in

Table S3). While being less sensitive overall in its ability to identify differential expression among lowly detected genes, which domi-

nated our dataset, this test was able to identify cluster-enriched genes that were not nominated by the binomial test (including several

genes that were). For example, this test correctly identified Pcp2, Pcp4, Trpm1 and Calm1 as RBC-enriched genes, which were not

nominated by the binomial test. These genes were ubiquitously detected in all cells but at much higher levels in the RBCs. For

example, Pcp2 was present at 17.3 transcripts per cell on average in RBCs, but at 3.1 transcripts per cell on average in non-

RBCs (Table S3). Similarly, this test correctly identified Cabp5 as being enriched in 5A, 5B and 5D but this was missed by the

binomial test.

Finally, we note that thet the threshold of 20%: appears extremely small. We believe this value is justified because the binomial

statistics are computed across hundreds to thousands of cells, which can lead to a significant result. The low sequencing depth

of our libraries makes dropouts very likely at the individual cell level. However, because of the large number of cells in our data,

the PCs capture significant collective correlations, even though individual cells are noisy. The clusters are defined based on these

collective signatures, even though an individual gene might be detected in a small fraction of cells within the cluster. Thus we found
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(and validated) multiple examples of marker genes that detected in only 100 out of 500 cells in a cluster (�20%), but its incidence in

the background was less than (0.1%), which is a statistically significant observation.

Selection of Candidate RBC Genes to Test Using FISH. For the screen of rod bipolar cell enriched genes, we tested the 10 novel

and most enriched genes nominated by the binomial test, and randomly selected 15 genes with robust expression (at least 0.5

average transcripts per cell) among the 100 most enriched genes (Table S3).

Alternative Clustering Methods and Robustness Tests

The Louvain-Jaccardmethod (Blondel et al., 2008; Levine et al., 2015;Matutano et al., 2014) generated reproducible clusters (Figures

1C and S2A–S2D), many of which were eventually validated as true bipolar types and/or identified as known retinal types (e.g., Müller

Glia, rods, cones, amacrines etc). Additionally, we tested alternative approaches to clustering, including recently proposed algo-

rithms for analyzing scRNA-seq data (Grün et al., 2015; Zeisel et al., 2015). We also tested our approach on smaller subsets of

our data to explore the impact of sample size on the sensitivity of clustering. We summarize the key results from these explorations

here. To facilitate easy comparison across all methods, results are visualized using the tSNE coordinates computed previously (Fig-

ures S2E–S2P). Key differences with regards to the output of the Louvain-Jaccard method (Figures 1C, S2A, and S2D) are noted in

each case. The merging step, wherever performed, is explicitly indicated.

Louvain-Unweighted. Levine et al. (2015) argued that weighting edges based on the Jaccard similarity metric removes spurious

links in the graph and can improve the ability to resolve ‘‘natural’’ clusters in the data. To test this, we repeated the clustering steps

using the Louvain algorithm, but using an unweighted 30-NN graph as input (the rest of the steps were identical). This produced

22 clusters, which after the merging step (implemented exactly as described earlier) resulted in 18 clusters (Figure S2E). Encour-

agingly in this set, the clusters corresponding to the major bipolar types (RBC, BC1A-BC8/9) and Müller glia were conserved.

However, many of the clusters with doublet-like signatures could not be resolved (e.g., clusters 17, 19, 21, 23 in Figure S2D)

and were merged with another cluster (Figure S2E, red arrows). In addition the rod, cone and rod-doublet clusters were

merged into a single cluster (Figure S2E, blue arrows). Thus, in agreement with (Levine et al., 2015), we find that the Jaccard

weighting step does remove spurious links especially between transcriptionally proximal clusters relating to cell doublets. Encour-

agingly in our dataset, none of the true BC clusters that were resolved by the Louvain-Jaccard method were merged together

indicating that, transcriptional differences between these clusters are robust and reflected in the structure of the unweighted

k-NN graph.

Infomap. The Infomap algorithm (Rosvall and Bergstrom, 2008) decomposes an input graph into modules by deriving a compres-

sive description of randomwalks on the graph. The result is a community structure that is represented through a two-level description

based onHuffman coding: the first level distinguishes clusters in the network, and the second level distinguishes cells within a cluster.

Infomap was implemented in R using code downloaded from http://mapequation.org/.

The input to the algorithm was an unweighted k-NN graph (k = 30). Infomap produced 49 clusters in the initial step (Figure S2F), 19

more than the initial output of Louvain-Jaccard (Figure S2A). A pairwise differential expression test between these clusters exhibited a

similar, albeit more accentuated, tail at values < 50 DE genes compared to Figure S2C (not shown). Investigating these clusters

revealed that 15 clusters nominated by Infomap were subdivisions of RBC-like cells (cf. Figure S2F), compared to 4 in the case of

Louvain-Jaccard (Figure S2A). These clusters shared the RBC-signature (Prkca+Sebox+Car8+Scgn-) but differed in the expression

of batch driven genes like Xist, Tsix, BC033916, Ddx3y, Eif2s3y, Fos, Dusp etc. Furthermore, cells within each of these 15 clusters

were predominantly derived from one of the two experimental batches (> 80% skew), suggesting that the most likely origin of these

extra RBC-like clusters were batch effects, and that Infomap was more sensitive to these signals in the data. It is also notable that,

many non-RBC clusters mapped 1:1 between Louvain-Jaccard and Infomap, specifically those retrospectively assigned to BC1A-

1B, BC2, BC3A-3B, BC4, BC5A-5D, BC7 and MG (Figure S2A versus Figure S2F).

Pairwise merging (implemented as before) resulted in 31 clusters (Figures S2G or 1D). Clusters 1-14 were identical between Lou-

vain-Jaccard, Louvain-Unweighted and Infomap (Figures S2D, S2E, and S2G). A large proportion of small clusters with doublet/

contaminant signatures were also reproduced (# 22-31). A key difference was that Infomap split the putative BC8/9 mixed cluster

in the Louvainmethod (Cluster 15 in Figure S2D) into two clusters that we subsequently validated as BC8 and 9, respectively (Clusters

16 and 20, Figure S2G, red arrow).

The amacrine cell cluster (Cluster 17, Figure S2D) was also split into two clusters corresponding to Glycinergic and GABAergic

cells, respectively (Clusters 18 and 21, Figure S2G, blue arrow). Thus, the greater sensitivity of the Infomap method enabled the

detection of clusters that were under-represented in the data.

Running Infomap using a Jaccard-weighted k-NN graph input resulted in a larger number of initial clusters (65 versus 50) but post

merging the results were identical (not shown). We speculate that Infomap, which is based on randomwalks on an input graph, is less

sensitive to the presence of spurious edges, than the Louvain method, which is based on modularity maximization.

PCA-2000 + Louvain-Jaccard. Statistically significant PCs, which were used for clustering, were computed based on expression

across 13,166 appreciably expressed genes. It is a common approach in scRNaseq studies to pre-select highly variable genes prior

to PCA/clustering (e.g., Macosko et al., 2015; Zeisel et al., 2015). We used the approach of Zeisel et al. (2015) to select 2,000 highly

variable genes in the data (based on fitting a relationship betweenmean versus coefficient of variation of all genes), and repeated the

PCA using only the expression of these genes. This was followed by Louvain-Jaccard clustering using significant PCs, estimated

using a permutation step. The results after the merging-step (Figure S2H) agree closely with the original results (Figure S2D), with

the exception that 3 doublet clusters (blue arrows in Figure S2H) were merged with larger clusters. Overall, this suggested that a
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smaller, highly variable subset of the genes was sufficient for resolving the most important clusters, but with a decreased sensitivity

toward identifying cell doublets.

k Means Clustering in PCA-Space. To evaluate whether a simpler, faster method could resolve the clusters when the number of

clusters was specified, we performed k-means clustering using the 37 significant PC scores as input (with k chosen to be 30 based

on the Louvain-Jaccard output). The raw output of k-means clustering (Figure S2I) was significantly different from that of Louvain-

Jaccard, pre-merging (Figure S2A). Specifically, we found that 9/30 of the clusters were subsets of the RBC cloud (2, 4, 6, 9, 11,

13, 14, 15, 25), while 4 clusters comprised Müller glia (#12, 16, 17, 22). Additionally, we found a few clusters that were an admixture

of validated types. BC types 1B and 2weremerged into a single cluster (Figure S2I, blue arrow) aswere BC types 3B and 4 (Figure S2I,

red arrow) (cf. Figures 1C and 1D). Furthermore, most of the cell doublet clusters and contaminant clusters were not resolved. We

speculate that the non-uniform/non-Gaussian distribution of the cells in expression space underlies the inferior performance of para-

metric methods like k-means over graph clustering methods. We also emphasize here that the apparent computational efficiency of

k-means clustering presumes that an appropriate value of k is known. If not, an additional layer of computation is necessary to select

an optimal value of k, the number of clusters (e.g., using methods like the gap statistic), which can substantially increase computa-

tional time.

tSNE + DBSCAN. Similar to (Macosko et al., 2015) we performed density clustering using DBSCAN on the tSNE coordinates as

input (eps = 1.8, minPts). As before, parameters were tuned so that the main point clouds on the tSNE map were assigned to distinct

clusters. At these, values, many small clusters of < 6 cells were detected, resulting in 72 clusters (Figure S2J).

Conceptually, this approach assumes that the output of tSNE, a visualization technique, faithfully represents the cluster structure of

the data. While we have found empirically in the current and past work that distinct cell types in the retina project onto well-separated

point clouds in tSNE, this need not be generally true when cell types/states occupy a more continuous spectrum (e.g., in hemato-

poiesis). On the practical side, the tSNE embedding can change based on stochastic initialization, which makes it hard to compare

the output on bootstrapped versions of the data, especially if the choice of density clustering parameters is tuned to the visualization.

Lastly, exact tSNE computation time and memory requirements scale with the number of points N as OðN2Þwhich can become pro-

hibitively long for even 50,000 data points. An approximate tSNE algorithm is available, but in practice, produces less well-separated

point clouds in practice compared to the exact method. In contrast, the visualization-independent graph clustering methods have a

computational and memory footprint that is between OðNÞ and OðN log NÞ, making it highly scalable for larger datasets (Fortunato,

2010).

Clustering on Batch 1 Cells. We explored the ability to detect major bipolar clusters on smaller subsets of the data. We ran our

clustering pipeline on 13,938 cells from the first biological batch (49% of our data). As in the case of the full dataset, we first ran

PCA on the median-normalized and log-transformed expression matrix of these cells (skipping batch correction). The resulting sig-

nificant PCs were used to find clusters using both the Louvain-Jaccard and Infomap algorithms (using a 30-NN graph). The results

following the cluster-merging step, which was implemented using the same parameters, are show in Figure S2K (Louvain-Jaccard)

and Figure S2L (Infomap, also see Figure 1E). Only cells that were included in the analysis are shown in the tSNE plots.

In this setting, both methods suffered only slight loss of sensitivity and were able to resolve most of the BC clusters as in the full

dataset. Louvain-Jaccard was unable to resolve the BC5B and BC5C clusters (Figure S2K, blue arrow). Infomap fared relatively bet-

ter, and was able to resolve these clusters (Figure S2L, blue arrow). However, when compared to its output on the full dataset, it was

unable to resolve BC8 versus BC9 (Figure S2L, red arrow).

BackSPIN. Originally proposed by Zeisel et al. (2015), BackSPIN is a biclustering method that based on the SPIN algorithm to sort

rows and columns of a correlation/distance matrix. BackSPIN begins by sorting the cell-cell correlation matrix evaluated based on a

subset of highly variable genes, and then splits the matrix into two groups of cells if a splitting parameter exceeds a user-defined

value (Default value 1.15). Genes are partitioned into the two splits based on their average expression. The procedure is then suc-

cessively repeated on each of the partitions until the number of splitting cycles exceeds a user defined threshold m. m split cycles

results in a maximum of 2m clusters.

We implemented BackSPIN using publicly available code (https://github.com/linnarsson-lab/BackSPIN) using the default param-

eters. We used the function feature_selection to select 2,000 highly variable genes (same set used in 3. above), and used themedian-

normalized, batch corrected and log-transformed expression matrix Ec
ij as input to the function backSPIN. The algorithm took longer

than 7 days to run on the full dataset (27,499 cells), so we elected to run it on the 13,938 cells from Batch 1, up to six cycles (runs were

performed on an Intel(R) Xeon(R) CPU, 2.67GHz, 100 GB of memory).

The clustering output of the BackSPIN algorithim, consisting of 10 clusters, is visualized in Figure S2M. BackSPIN successfully

separated RBC, Müller glia and large cone bipolar clusters corresponding to BC5A, BC6 and BC7. However, it reported the following

cases as single clusters (1) BC1A, BC1B, BC2, BC8/9 (Figure S2M, red arrows); (2) BC3B, BC4, BC3A (Figure S2M, blue arrows);

(3) BC5B, BC5C and BC5D (Figure S2M, green arrows); and (4) Rods/Cones and Amacrine cells (not indicated).

We speculate that the inability of BackSPIN to resolve these clusters relates to the default value of its minimum splitting score

(parameter k in the function backSPIN, defaults to 1.15). Preliminary tests indicated that lowering the value of this parameter could

potentially resolvemore clusters, but exploring a rigorous, data-driven way to choose the optimal value of this parameter for our data-

set was not obvious, and also beyond the scope of this work.

Clustering on 5,000 Cells from the First Batch. To further explore the effect of sample size on the sensitivity of clustering, we tested

our methods on 5,000 randomly sampled cells from the first batch (18% of our data) after normalization and PCA. The clustering
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output of Infomap is shown in Figure S2N (as in 6. Louvain-Jaccard exhibited lower sensitivity and is not shown). Compared to its

performance on 13,938 cells, Infomap reported BC5B/BC5C, BC3B/BC4 and rods/cones respectively as single clusters (Figure S2M,

blue, red, and green arrows respectively), and additionally was unable to detect the amacrine cluster (black arrow). It also failed to

resolve members of the ‘‘doublet clusters’’ and merged them into larger clusters because they were poorly represented in this data-

set. Interestingly, Infomap was still able to resolve the BC8/9 (Figure S2N, cluster 15), although only 56 cells of this cluster were pre-

sent in the data.

BackSPIN’s performance on this dataset (Figure S2O) was slightly worse on this dataset compared to its performance on the

13,938 cells (Figure S2L, arrows). In addition to the shortcomings listed in 7., it was unable to fully resolve the BC6 cluster (Figure S2L,

black arrow).

RaceID.RaceID (Grün et al., 2015) was developed to enable the identification of rare and abundant cell types from single-cell RNA-

seq data. Here, we disabled the rare cell type identification step, and only ran the first step of RaceID. To identify abundant cell types,

the algorithm uses the k-means method to find clusters on expression data. The optimal number of clusters is calculated using the

gap statistic method.

We ran the publicly available implementation of RaceID (https://github.com/dgrun/RaceID) with mintotal = 600, minexpr = 5, min-

number = 1, maxexpr = 500 (all other parameters were set to their default values). Because of its long running time (due to the gap

statistic calculations), RaceID could only be run on the 5,000-cell dataset (2123 genes selected), and took 4 days to complete on an

Intel(R) Xeon(R) CPU, 2.67GHz, 100 GB of memory. The clustering output of RaceID is shown in Figure S2P, and consisted of 4 clus-

ters (chosen by the gap-statistic method), two of which were divisions with the RBC cluster. The remaining two clusters were an

admixture of BCs and Müller glia (Figure S2P). We speculate that RaceID fails to identify meaningful clusters because of the poor

performance of k-means clustering on the raw, high dimensional data. Indeed, we also observed that the performance of graph clus-

tering algorithms deteriorated when applied directly to the raw data, likely because of the noise in nearest neighbor estimation in high

dimensional spaces. Thus PCA, in addition to reducing the dimensionality of the data to ameaningful representation, also serves as a

‘‘de-noising’’ step.

Comparison with Full Retina Drop-Seq

To assess the reproducibility of Drop-seq and the performance of our computational pipeline, we reanalyzed cells from the eight

bipolar cell clusters identified in the full retina Drop-seq study (Macosko et al., 2015). We asked whether the difference in the number

of clusters reflects lack of reproducibility, larger cell number in the current dataset, and/or improved clustering methods.

Macosko et al. (2015) identified 39 clusters from 44,808 retinal cells using the tSNE + DBSCAN approach. These included 8

Vsx2+Otx2+ bipolar clusters (26-33) that comprised 6,285/44,808 cells. Of these, clusters 27-33 had a cone-bipolar signature

(Scgn+Prkca-) and cluster 26 comprised rod bipolar cells (Scgn-Prkca+). We removed cells that contained fewer than 500 detected

genes (n = 810) or greater than 10% mitochondrially-derived transcripts (n = 8). The remaining 5,466 cells had a median 1,035

detected genes. We considered 12,318 genes detected in greater than 20 cells, and clustered the original expression matrix based

on the following procedure,

(1) Correct for batch effects using ComBat (7 batches); (2) z-score (standardize) gene values and find significant PCs using a per-

mutation test (20 found); (3) Build a 30-NN graph and cluster using Infomap; (4) Iteratively merge clusters pairwise based on differ-

ential expression. (We elected to use Infomap rather than the Louvain-Jaccard method as it demonstrated greater sensitivity on

smaller datasets in our downsampling experiments).

Infomap detected 16 clusters, which were visualized on a tSNE map computed from the PC scores (Figure S3A) (Note. These

were recomputed and are not the coordinates published in Macosko et al. [2015]). Types were assigned to these clusters based

on top differentially expressed markers (binomial test) following the heuristics detailed in Table S2. Coloring the tSNE map with the

original cluster identities (Figure S3B) from Macosko et al. (2015) showed that closely related bipolar types had been lumped by

the original analysis (e.g., BC1A-1B, 2-3A etc.), but were resolved when analyzed in isolation using our present computational

approach. 12/16 clusters were comprised of BCs, and the remaining four included non-bipolar cells, cell doublets, or dying cells

that were likely misclassified in the original dataset. We also noticed some variation within clusters – for example, some RBCs

expressed higher levels of rod genes (e.g., Prkca, Sag) and mitochondrially encoded genes (e.g., mt-Co2, mt-Rnr2) suggesting

these could be a combination of doublets and apoptotic cells (Figure S3A, dashed ellipsoid). Lastly, we note that despite analyzing

BCs in isolation, the different types do not perfectly segregate on the tSNE map, reflecting the limitations of the tSNE + DBSCAN

approach.

To understand how closely the assigned types in the full retina data matched the corresponding types identified in the bipolar data

presented in the present work, we computed the Pearson correlation coefficient between the average expression values of the major

Louvain-Jaccard clusters identified in the Vsx2-GFP Drop-seq dataset (Figure 1C) against the clusters identified in the full retina

Drop-seq dataset by Infomap (Figure S3A). Figure S3C shows that the expression vectors of corresponding types are highly corre-

lated (r > 0.88), reflecting the robustness of gene signatures among similar cell types between the two datasets. Also, clusters that are

a mixture of closely related types in the full retina data, show a similar high correlation with the corresponding clusters in the bipolar

data (e.g., the BC5B+5C cluster in the full retina data shows high correlation with both the BC5B and 5C clusters in the Vsx2-GFP

data; and similarly the BC3B+4 cluster shows high correlation with both the BC3B and 4 clusters in the Vsx2-GFP data).

Two reasons could underlie the imperfect classification in the full retina Drop-seq data compared to the bipolar data: (1) The smaller

number of cells; and (2) the quality of the transcriptome data. Here, we found that almost all of the cells had abundant levels of
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rhodopsin expression, likely due to cross-contamination (rods constituted > 65%of cells in the dataset and are often damaged during

tissue dissociation, with the result that rod transcripts are abundant in ambient, cell-free RNA) (Figure S3F). In contrast, the levels of

rhodopsin were low in most clusters except those classified as rods in the bipolar data.

Using Drop-Seq Clusters to Train a Random Forest Classifier

Analysis of smaller subsets of our Drop-seq dataset (Figures S2K, S2L, and S2N) and the full retina dataset (Figure S3A) suggested

that as sample size decreases, it becomes challenging to resolve distinct cell types.While cell types like RBCs orMüller Glia are easily

classifiable because of their distinct transcriptional signatures, our experiments above foreshadowed the possibility that in smaller

datasets closely related types like BC3B/4 or BC5B/5C are likely to be lumped into single clusters. We reasoned that a supervised

classifier trained on the cluster signatures from the Vsx2-GFP Drop-seq dataset could be useful to further resolve independent data-

sets where unbiased clustering is likely to be insufficient.

We used our Louvain-Jaccard cluster labels to train a random forest classifier on our Vsx2-GFP Drop-seq dataset. A random forest

(Breiman, 2001) is an ensemble learning method that consists of a multitude of decision trees, each trained on a random ‘‘bag’’ of

features (here, genes). We composed a ‘‘training set,’’ sampling cells from 18 major clusters in the primary Drop-seq data: Clusters

1-16, 20, 22 (Figure 1C), which represented all 13 BC types (BC8/9 was treated as a single cluster), RBCs, Müller Glia, amacrine cells,

rod and cone photoreceptors. The number of cells from each cluster k that was included in the training set Nk was chosen such that

Nk =min(300, 0.4*jcellsk j ), and thus at most 40% of each cluster was used for training. The training set was comprised of 3,990 cells

(14.2% of our dataset) and we used the z-scored expression vectors of these cells’ columns of Eij. The remaining 24,004 cells were

used to test the performance of the trained classifier.

We trained a random forest using 1,000 trees on the training set using the R package randomForest. Stratified sampling was used

to ensure that all classes were equally represented in training each of the composite trees. The median ‘‘out-of-bag’’ error rate of the

final classifier, which quantifies the quality of the model, was less than 2% for all the 18 classes (median value 0.8%). Finally, we

tested the trained model on the 24,004 cells (test set) that were kept aside, whose labels were independently known from the original

clustering, but not used to build the classifier. We used the model to assign a class label (one of 18 possible labels) to each cell, but

considered this a valid assignment only if themajority votewas composed of aminimumof 15%of the trees in the forest (with 18 class

labels, even a �5.5% vote could constitute a majority). Based on this criterion, 214 cells in the test set could not be classified into a

definitive class (0.9%). The classification error rate for the remaining cells was strikingly lowwith amedian per-class-misclassification

rate of 1%. Figure S3D shows a ‘‘confusion matrix’’ for this classification, whose diagonal structure reflects the robustness of the

classifier.

Lastly, we used this model to classify each cell in the full retina dataset. As before, we assigned each cell to the class with the

majority vote, only this comprised > 15% of the trees. Our results (Figure S3E) show that in nearly all the full retina clusters, a majority

of the cells could be classified to the type that was consistent with their labeling based on top differentially expressed markers (Fig-

ure S3G). Clusters combining cells from two types (BC3B/4, BC5B/5C) were decomposed into these types by the classifier. Only two

clusters contained a majority of cells (> 80%) that could not be classified: these clusters had a high expression of photoreceptor

genes (Figure S3F). Taken together, these results show that type-specific gene expression signatures were faithfully and robustly

reflected in the expression levels of individual cells from the putative corresponding type, rather than just cluster averages or

over-fitting within a dataset (Figure S3C).

Dendrogram

Average expression vectors were calculated for all the 15 bipolar clusters. For each cluster, we averaged the normalized gene counts

Mij across all the cells, and then log-transformed this value after the addition of 1. We then removed all genes whose average expres-

sion values were lower than 0.1 across all clusters, and/or that did not show sufficient variability in these values (CV < 0.1). This re-

sulted in 3,839 genes. Slight variations in these parameters did not affect qualitative results. The average expression vectors

including these genes were hierarchically clustered using the R package pvclust (Euclidean distance, average linkage), which pro-

vides bootstrap confidence estimates on every dendrogram node, as an empirical p value over 10,000 trials (Figures 1G and 6B).

Euclidean/Correlation based distance and Average/Complete linkage yielded consistent dendrograms.

GO-PCA

Significantly enriched Gene Ontology (GO) terms with the top principal components in the Drop-seq data were computed using GO-

PCA, an unsupervised method to mine key signatures in gene expression data (https://github.com/flo-compbio/gopca) (Wagner,

2015). We considered only the 14 Louvain-Jaccard clusters of BCs, and the three clusters corresponding to rods, cones and Müller

glia in this analysis (Figure 1C).

We used our cluster labels to generate multiple cell-averaged gene signatures for each of the 17 clusters, as a means to

suppress sampling noise in measurements of individual cells. Briefly, we sampled N instances of m randomly chosen cells from

each cluster, and in each case instance averaged the expression vectors of them chosen cells. For c clusters, this yieldsN*c expres-

sion vectors each of which is an m-cell averaged gene signature. We chose N = 200, and m = 20 for the BC and Müller glia clusters,

andm = 5 for the rod and cone clusters, as the latter were smaller in size. The resulting 13,166 genes x 3400 input matrix was used as

input to GO-PCA, which was run with the default parameter values (see https://gopca.readthedocs.org/en/latest/running.

html#running-go-pca-go-pca-py). GO-PCA was performed twice, once on only the BC meta-clusters (Figure 6C; Table S5), and a

second time by including the photoreceptor and Müller glia meta-clusters (Figure S7A).
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Computational Methods Smart-Seq2 Data
Vsx2-GFP Smart-Seq2 Data Analysis Steps

288 single-cell libraries and 4 bulk libraries were sequenced. Expression levels of gene loci were quantified using RNA-seq by Expec-

tation Maximization (RSEM) (Li and Dewey, 2011). Raw reads were mapped to a mouse transcriptome index (mm10 Ensembl build)

using Bowtie 2 (Langmead and Salzberg, 2012), as required by RSEM in its default mode. On average, 93% of the reads mapped to

the genome in every sample (range 91.8%–94.6%), and 63%of the readsmapped to the transcriptome (range 53.5%–71.8%). RSEM

yielded an expression matrix (genes x samples) of inferred gene counts, which was converted to TPM (transcripts per million) values

and then log-transformed after the addition of 1 to avoid zeros.

We considered 229 single-cell libraries that satisfied the following QC criteria: > 500K genome mapped reads, genome mapping

rate > 50%, transcriptome mapping rate > 25%, % intergenic reads < 20%, read duplication rate < 10%, > 2,000 genes detected

(including only genes that are detected in at least 5 cells), rRNA rate < 10%. The final expression matrix consisted of 14,191 genes

and 229 cells. These cells altogether accounted for 183 million mapped reads, which was roughly 80% of the amount of mapped

reads in the Drop-seq cells.

As in the case of the Drop-seq dataset, we used PCA to reduce the dimensionality of our expressionmatrix after standardizing each

row. 10 significant PCs were identified by a permutation test, and these PCs were used to cluster the cells based on the Infomap

method (k = 15) and also to independently embed these cells on a tSNE map (Figure 7E). (The Louvain-Jaccard method yielded

similar results). We then used the random forest classifier trained and validated on the Drop-seq dataset to classify each individual

cell based on its scaled expression vector. The class assignment was completely agnostic to the output of the clustering or its loca-

tion on the tSNEmap. A cell was assigned to a class (out of 17 possible classes) based onmajority vote, only if it constituted > 15%of

the trees in the random forest. 2/229 cells failed to be classified. The remaining 227 cells were classified into nearly all of the expected

types in theVsx2 transgenic line in expected proportions featuring RBCs (n = 99),MG (n = 22), BC1A (n = 14), BC1B (n = 4), BC2 (n = 3),

BC3B (n = 8), BC4 (n = 9), BC5A (n = 24), BC5B (n = 2), BC5C (n = 11), BC6 (n = 16), BC7 (n = 8), BC8/9 (n = 5), amacrine cells (n = 1), rod

photoreceptors (n = 1). Notably, none of the cells were classified as BC3A or BC5D.

Encouragingly, all the moderately sized clusters (n > 10) by the PCA+Louvain-Jaccard method either consisted of a single RF type

(Figure 7E, e.g., RBC, BC5A, MG) or, more often, of two closely-related types (e.g., BC3B-BC4 or BC1A-BC1B). This enabled us to

use the Drop-seq signatures to deeply resolve the Smart-seq2 data, which were not fully possible using unbiased approaches. Using

the RF class assignments, we then searched for differentially expressed genes for each of the BC types that had at least five cells and

MG using a likelihood ratio test (McDavid et al., 2013). Briefly, cells in each cluster were compared against the remaining cells and

significantly upregulated genes at an average expression fold change of at least 2 were recorded (FDR < 0.01). The top differentially

expressed genes in all clusters were identical to those nominated by Drop-seq.

Taken together, these results underscore the reproducibility of our classification across multiple datasets. When the quality of the

unbiased classification is compared to the classification on the 13,000 and 5,000 cell Drop-seq data, these results also suggest that

when the goal is to classify a heterogeneous tissue into cell types, it is far more beneficial to sequence amuch large number of cells at

a shallow depth than to distribute those reads across a few cells.

Kcng4-cre;stop-YFP Smart-Seq2 Data Analysis Steps

Raw reads from the 384 single-cell RNA-seq libraries were mapped and quantified as described in the previous section. 309 single-

cell libraries that satisfied the following QC criteria were considered for further analysis: > 500K genome mapped reads, genome

mapping rate > 50%, transcriptome mapping rate > 30%, % intergenic reads < 20%, read duplication rate < 10%, > 2,000 genes

detected (including only genes that are detected in at least 5 cells), rRNA rate < 10%. The RSEMexpressionmatrix (log(TPM+1) units)

consisted of 14,191 genes and 309 cells, sequenced to a typical depth of 1.07million transcriptome-mapped reads. On average 75%

of the reads mapped to the genome in every sample, while 47% of the reads mapped to the transcriptome and 6,388 genes were

detected per cell.

We performed PCA+Infomap clustering followed by merging (yielding 4 major clusters) and visualization on tSNE as described in

the previous section. Random forest classification was performed on each cell using its expression vector, but with the following key

difference in normalization. Gene expression values (log(TPM+1) units) were not standardized using the mean (m) and standard de-

viation (s) within the Kcng4-YFP dataset. Instead, for every gene we computed m and s using the 229 cells Vsx2-GFP Smart-seq2

dataset, and used these quantities to standardize (subtract m and divide by s) the corresponding gene expression values in the

Kcng4-YFP+ cells. Since the random forest classifier was trained on standardized Vsx2-GFP cell signatures of Drop-seq, we

reasoned that Smart-seq2 measurements from the same biological source would serve as the most appropriate background model

for feature normalization prior to classification.

The normalized expression vector of each cell was used to query the random forest model for one of 18 possible class labels. As in

the previous section, a cell was assigned to a class only if itsmajority vote comprised > 15%of the trees in the random forest. Here we

found that a majority of cells within one of the four large clusters (n = 82) failed to be classified unequivocally (Figure 7G). Examination

of their gene signatures showed that these cells coexpressed Type 5 (Cabp5, Grm6, Kcng4) and rod photoreceptor markers (Rho,

Pdc, Gnat1), suggesting that these could be cell doublets. Majority of cells in each of the three remaining clusters classified into a

single class; these comprised BC5A (n = 110), BC5D (n = 60) and BC7 (n = 43), consistent with our type assignments of these clusters

based on the differentially expressed genes (Sox6 and BC046251 in BC5A, Lrrtm1 and Kirrel3 in BC5D, Igfn1 and Kcnab1 in BC7)

(Figures 7H and 7I).
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Assessment of Cluster Stability and Purity

The ‘‘cluster stability index’’ defined as,

Stabilityk = 1�
�

1

500

� X500
i = 1

Hk
i

HTot
i

whereHTot is the overall Shannon diversity index (entropy) of the cl
i uster distribution of cells in realization i fpjgN
i

j =1 andNi is the number

of clusters found in realization i by Louvain-Jaccard, before merging. Then,
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As the formula suggests a cluster is ‘‘stable’’ if Hk
i is much less than the background entropy HTot

i .

The ‘‘cluster purity index’’ is defined as,

Purityk =

�
1

500

� X500
i = 1

��cellsk3cellsclustði;kÞ
����cellsclustði;kÞ��
where, clustði; kÞ denotes the cluster in realization i that contains
 the maximum proportion of cells from the original cluster k. cellsk
denotes the cells that comprise cluster k.

As an illustration, consider two situations: (1) Cells from cluster k are found to form three clusters each consisting of only cluster k

cells; and (2) Cells from cluster k are found to all be assigned to a large cluster that contains cells from additional clusters. The former

situation would lead to low Stabilityk but high Purityk , while the latter situation would lead to high Stabilityk but low Purityk .

We emphasize that the quantities Stabilityk and Purityk attempt to provide a quantitative answer to the following question: Does a

clustering method provide consistent answers when only a fraction of the cells are used for clustering, and/or when the underlying

input graph is noisy? In other words, they merely evaluate the reproducibility of a particular method’s output (e.g., Louvain-Jaccard)

to perturbations in the input dataset. High values of these metrics are necessary but not sufficient conditions for the output of a clus-

tering algorithm to be valid. Indeed, it is possible that two clustering methods produce different solutions, each of which is both ‘‘sta-

ble’’ and ‘‘pure.’’ Which of these answers is correct, if at all, can only be resolvedwith further validation and testing that is independent

of the principal dataset itself. Nevertheless, the convergence of multiple different methods to a similar solution could be construed as

an encouraging sign (as was the case of the Louvain-Jaccard and Infomap algorithms tested on bipolar cell data).

Binomial Test for Differential Expression

Consider the case wherein we wish to ascertain if a gene g is expressed more frequently in subpopulation A (N cells) compared to a

second subpopulation B (M cells). Suppose gene g is present in Ng/N in subpopulation A and inMg/M cells in supopulation B (> = 1

transcript/cells). To test whether gene g is a marker for subpopulation A with B as reference, we compute the following p value,

pg =
XN
k =Ng

�
N
k

�
gkð1� gÞN�k

Here, g=Mg=M is the detection frequency in subpopulation B. A low p value indicates that g is present in A cells with amuch higher

frequency than can be explained by its frequency in subpopulation B. To avoid spurious significance calls where Mg = 0 but Ng is

small (e.g., 1 or 2), we added a pseudocount of 1 whenever Mg = 0. This filters out genes that are extremely lowly expressed in

both populations. In comparing two populations, we only considered genes that satisfied a minimum effect size defined as

e= ðNg=NÞ=ðMg=MÞR2. We computed the nominal pg for all valid genes and converted these to FDR values. A gene was considered

statistically significant if it satisfied FDR < 0.01.

A similar test can be performed to find genes that are enriched in B compared to A. To find marker genes for subpopulation A

against all the other cell types in the data, we pooled the cells from all the subpopulations except A, and regarded this pool as sub-

population B.

Note: This test is only suitable for finding genes that exhibit a binary (ON/OFF) pattern of expression. Specifically, it is incapable

of nominating genes that are expressed in both cell types but at different quantitative levels. Moreover, the test, in its current

formulation, does not differentiate between different quantitative levels of transcript expression (e.g., two cells that express two

and five transcripts of a gene are regarded as equivalent). This makes the test conservative, and particularly suited to datasets con-

sisting of a large number of cells, where in each case only a small portion of the transcriptome is captured. For example, in the current

dataset, a gene, when expressed in a cell, was usually present 90%of the time at a transcript count%3: Each reported transcript had

on average 4 supporting reads (IQR 3-7), making these counts highly reliable.

Lastly, we note that test can be easily generalized to multinomial versions that account for expression levels.
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QUANTIFICATION AND STATISTICAL ANALYSIS

For the Drop-seq experiments, cells were collected from five and four Vsx2-GFPmice during first and the second batch, respectively.

In both batches, single-cell suspensions from dissected retinas were pooled and sorted for GFP+ cells. For the Vsx2-GFP Smart-

seq2 experiments, left and right retinas from one Vsx2-GFP mouse and the left retina from another mouse were dissected, sus-

pended and separately processed using FACS to prepare three 96-well plates of single cells. Bulk populations of �10,000 cells

were also sorted from each retina. For the Kcng4-cre;stop-YFP Smart-seq2 experiments, four retinas from two animals were

dissected, suspended and separately sorted into four 96-well plates of single cells. For the Tg(Htr3a-EGFP)#aShkp) bulk RNA-

seq experiments four retinas from two animals were used for each of the two replicates.

For experiments involving FISH or immunohistochemistry, retinas were from two or more animals for each experiment. Sections

were obtained from the vicinity of the optic nerve, Approximately 80 retinas were used for histological analysis.

Statistical methodologies and software used for performing various types analysis in this work are cited where appropriate in the

STARMethods text. Most of the analysis was performing in R, but python was used for certain tasks (e.g., running the tSNE algorithm

and the BackSPIN algorithm. Expression patterns of genes across cell clusters are shown in dotplots (e.g., Figure 1F), which simul-

taneously depict the fraction of cells in a cluster (row) that express a particular marker (column) based on the size of the dot, and the

average number of transcripts in the expressing cells based on the color scale, as indicated in the legends. In the dendrograms,

asterisks denote statistical significance as assessed by empirical p values calculated using bootstrap (*, p < 0.1; **, p < 0.01;

***, p < 0.001; ****, p < 0.0001).

Differential expression of genes across clusters in the Drop-seq data was evaluated using the binomial test (see above). Differential

expression of genes in the Smart-seq2 dataset was evaluated using the method described in as used in our previous work (McDavid

et al., 2013). The binomial test could not be used here because of the nature of the data (full transcript length, and non-UMI). We

employed multiple hypothesis correction wherever significance was evaluated across multiple statistical tests, using an FDR

threshold of 0.01.

DATA AND SOFTWARE AVAILABILITY

Data Resources
Raw and processed data files for Drop-seq and Smart-seq2 experiments are available under the GEO accession number GEO:

GSE81905. A visualization of the bipolar cell clusters and gene expression signatures is available at https://portals.broadinstitute.

org/single_cell/study/retinal-bipolar-neuron-drop-seq.

R Markdown Code for Reproducing Clustering Analysis
As an accompaniment to this paper, we provide an Rmarkdown file that describes step-by-step instructions startingwith loading and

preprocessing the Drop-seq digital expression matrix, PCA, clustering based on Louvain-Jaccard and Infomap, and data visualiza-

tion. The digital expressionmatrix and functions necessary to run these commands are also provided as an R data file and an R script

respectively and can be accessed at https://github.com/broadinstitute/BipolarCell2016.
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Supplemental Figures

Figure S1. Library Complexity Metrics, Correlation between Replicates, PCA, and tSNE, Related to Figure 1

(A) Violin plots of genes/cell (upper) and transcripts/cell (lower) across the six experimental replicates. Only 27,994 cells filtered based on QC criteria are included

(individual points).

(legend continued on next page)



(B) Histogram of the ratio of the number of observed reads and the number of observed UMIs for the nonzero entries of the digital expression matrix (DGE).

Dashed read line shows the median value. Both axes are represented in logarithmic units.

(C) Histogram of the values of non-zero transcript counts observed in the DGE. y axis is represented in logarithmic units.

(D) Scatter plot of gene expression values before batch correction (Eij units) between two cells randomly chosen fromBatch 1 replicate 1. Each dot corresponds to

a gene, and many genes have similar values because of the digital nature of the data.

(E) Scatter plot of average gene expression values (across cells) between replicate 1 and replicate 4 of Batch 1.

(F) Same as (E) for replicate 1 and replicate 2 of Batch 2.

(G) Same as (E) for Batch 1, replicate 1 and Bach 2, replicate 1. Representative genes that are differentially expressed are indicated (full list in Table S2).

(H) Sample-sample correlation (Pearson) of cell-average gene expression values (Eij , upper triangular), and of non-normalized cell-average transcript counts

(lower triangular), before batch correction. For (E)–(H), average expression values for every genewithin a sample were computed by first averaging the normalized

transcript counts Mij across all the cells, adding 1 and then taking the logarithm. Only 13,166 significantly expressed genes were considered.

(I) Scatter plots of PCA-scores for PC1-PC2, PC3-PC4 and PC9-PC10. Each dot corresponds to a single cell, and is colored based on its sample of origin (legend).

(J) PCA - eigenvalue spectrum computed using the real expressionmatrix (upper) and randomized (n = 500) expressionmatrices (lower). The theoretical spectrum

based on the Marchenko-Pastur (MP) law is shown in red in the lower panel. The empirically observed (rand) and the predicted (MP) maximum and minimum

eigenvalues l+ and l� for the randomized data are indicated (see Equations 1 and 2 in the STAR Methods). Eigenvalues that are larger than the empirical-bound

are indicated with red arrows (upper).

(K) 2D visualization of single-cell variation using t-distributed stochastic neighbor embedding (tSNE), computed based on cell scores along 37 significant PCs.

Single cells are colored based on their sample of origin and the scheme is the same as in (I).



Figure S2. Bootstrap Analysis of Louvain-Jaccard Clusters, and Comparison of Six Clustering Methods, Related to Figure 1

(A) Clustering output of Louvain-Jaccard, prior to merging proximal clusters.

(B) Stabilityk and Purityk scores for Louvain-Jaccard clusters in (A).

(C) Histogram of the number of differentially expressed genes (based on a binomial test described in the STAR Methods, FDR < 0.01) found in all pairwise

comparisons of clusters in (A) (N = 435 comparisons). In each pairwise comparison, only genes detected in at least 20% of cells in at least one of the two clusters,

and exhibiting an effect size > 2 were considered. The median number of differentially expressed genes (DE) in a pairwise comparison was 418 (red dashed line).

Inset shows that a small number of clusters have fewer than 50 DE genes.

(legend continued on next page)



(D) Louvain-Jaccard clusters, after iteratively merging clusters with fewer than 50 DE genes (henceforth referred to as the ‘‘post-merge’’), identical to Figure 1C.

(E) Louvain clusters based on an unweighted k-NN graph, post-merge.

(F) Clustering output of Infomap, without merging.

(G) Infomap clusters, post-merge, same as Figure 1D.

(H) Post-merge Louvain-Jaccard clusters, based on significant PCs constructed using a subset of 2000 highly variable genes.

(I) k-means clustering in PCA space (k = 30), without the merging step.

(J) Density clustering in tSNE space using DBSCAN using the parameters minPts = 10, eps = 1.8. No merging was performed.

(K) Louvain-Jaccard procedure, post-merge, applied on 13,938 cells from Batch 1 (all 4 replicates).

(L) Infomap procedure, post-merge, on the same dataset as (K), same as Figure 1E.

(M) Output of BackSPIN on the same dataset as (K). No merging was performed. Arrows indicate key differences compared to (K) and (L).

(N) Infomap procedure, post-merge, applied on a randomly chosen subset of 5000 cells from Batch 1 (sampling across all 4 replicates).

(O) Output of BackSPIN on 5000 cells used in (N). Nomergingwas performed. Arrows indicate key clusters that were resolved by Infomap/Louvain-Jaccard on the

equivalent dataset (N) but are not resolved by BackSPIN.

(P) Output of the clustering step RaceID on 5000 cells used in (N). No merging was performed.

In (A) and (D)–(P), the output of various clusteringmethods are visualized on the tSNEmap shown in Figures 1C and S1K. In the (K)–(P) only cells represented in the

downsampled dataset are shown on the tSNE map.



(legend on next page)



Figure S3. Reanalysis with Full Retina Drop-Seq Data, Comparison with Results from This Study, and Heatmap of Differentially Expressed

Genes across BC Clusters, Related to Figure 1
(A and B) Recomputed tSNE representation of 5,466 BCs from full retina Drop-seq data. Cells are colored according to their cluster identity based on Infomap

in (A). In (B), they are colored according to their original cluster identity in (Macosko et al., 2015), where clustering was performed using tSNE + DBSCAN.

(C) Matrix of Pearson correlation coefficients of cell-averaged gene expression signatures of Infomap clusters in the full retina Drop-seq data shown in (A) (rows)

and final Louvain-Jaccard clusters in the Vsx2-GFPDrop-seq data shown in Figure 1C (columns). Clusters are labeled according to their tentative types based on

top differentially expressed genes. Note. Average expression values for every gene within a sample were computed by first averaging the normalized transcript

counts Mij across all the cells, adding 1 and then taking the logarithm.

(D) Test set performance of random forest model trained on the Vsx2-GFP dataset with Louvain-Jaccard cluster labels. A training set was formed by choosing

�15% of cells from the full dataset labeled according to the Louvain-Jaccard method (Figure 1C). Cells were chosen only from the subset of the data corre-

sponding to 14 BC types, Müller glia, rod photoreceptors, cone photoreceptors and amacrine cells, and the remaining cells from these clusters were held out as

the ‘test set’. The trained RF model was then used to classify each cell in the test set, and the predicted cluster label (one of 18, columns) was compared to its

withheld cluster label (rows), and the result is shown as a confusion matrix. A cell was only assigned a class if > 15% of trees in the RF model contributed to the

majority vote, else it was deemed ‘unclassified’.

(E) Confusion matrix of RF-assigned class (columns) versus tentative cluster label based on top differentially expressed genes (rows) in the full retina Infomap

clusters (rows). A cell was only assigned a class if > 15% of trees in the RF model contributed to the majority vote, else it was deemed ‘unclassified’.

(F) Violin plots showing Rho expression in the full retina Infomap clusters (upper) and the Vsx2-GFP final Louvain-Jaccard clusters (lower).

(G) Heatmap of transcript counts showing differentially expressed genes across the 14 BC (Figure 1C. Note BC8/9 is a single cluster) and MG clusters. Rows

correspond to individual genes found to be enriched in individual clusters based on a binomial test (FDR < 0.01); columns are individual cells, ordered by cluster.

Note. The expression scale is capped at 2 since very few non-zero transcript counts (< 20%) are higher than this number.
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Figure S4. Validation of RBC Markers, Related to Figure 2

(A) Representative panel of FISH labeling for transcripts enriched in RBCs. Co-localization is shown using IHC for the RBC marker PKCa.

(B) Higher magnification view of labeling for low abundance transcripts.

(C) Heat map showing relative expression value (normalized by row) for RBC-enriched transcripts in other retinal cell types in the previous whole retina dataset

(Macosko et. al., 2015). Enriched transcripts detected in other cell types were consistent with the types of non-RBC cells labeled in (A). Scale bars, 20mm (A) and

10mm (B).
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Figure S5. Validation of Genes Marking BC3A, BC3B, BC4, BC6, and BC7 Plus BC2 Known Marker Expression, Related to Figure 2

(A) Nnat is expressed in cells labeled by the BC3B marker PkarIIb.

(B and C) Cabp5 is co-expressed with Erbb4 (BC3A marker), but not with Col11a1 (BC4 marker), consistent with Cabp5 expression patterns in these types

(Figure 1F).
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(D) Igfn1 is expressed in cells labeled by the Gustducin-GFP transgenic mouse line, known to brightly label BC7.

(E) Injection of cre-dependent AAV-stop-YFP into a Cck-cre mouse line labels S5 laminating cells that are positive for Syt2, a marker of BC6 axon terminals, in

addition to BC2 cells.

(F) Expression of previously described BC2 markers. Representation as in Figure 1F. Scale bars 20 mm.
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Figure S6. Validation of Genes Marking BC1A and BC1B, Morphological Transition of BC1B during Development, and BC1B Markers in

Mature Adult Retina, Related to Figure 3

(A–F) FISH labeling of additional markers for BC1A and BC1B. Staining is of P17 tissue from the MitoP-CFP line, with CFP detected using anti-GFP antibody.

(G) Fezf1-cre crossed to a tdTomato cre-reporter mouse line labels BC1B cells, as determined by morphology and IHC for Vsx2.

(H) Most cells lacking an upward process at P8 are predominantly nGnG amacrine cells (Ppp1r17+, Vsx2-).

(I) The BC1B (and BC2) marker Nxph1 labels MitoP-CFP+ cells with an upward process at P8.

(J–L) The unipolar population persists until at least P100, as assayed by IHC staining for (J) Otx2, (K) FISH for Nxph1, (L) and IHC for Lhx3 and Vsx2. Scale bars

indicate 20 mm for main panels and 10 mm for insets.
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Figure S7. Analysis of Gene Sets in BCs, Related to Figure 6

(A) Enriched GO-terms in BC, Müller glia, rod photoreceptors, and cone photoreceptors. GO category names and IDs are indicated as row names.

(B–E) FISH+lentiviral labeling for Grm6 in BC5A-D, note the lower expression of Grm6 in BC5D in (E).

(F) Double FISH in retinal whole-mounts with the BC5Dmarker Lrrtm1 (red) andONBCmarkerGrm6 (green) validates the lowGrm6 expression in this putative ON

BC type. Noise reduction applied to GFP+ lentivirus labeled cells as in Figure 2. Scale bars indicate 20 mm for main panels and 10 mm for insets.
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