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Abstract
We present a general method for explaining individual predictions of classification models. The
method is based on fundamental concepts from coalitional game theory and predictions are ex-
plained with contributions of individual feature values. We overcome the method’s initial exponen-
tial time complexity with a sampling-based approximation.In the experimental part of the paper we
use the developed method on models generated by several well-known machine learning algorithms
on both synthetic and real-world data sets. The results demonstrate that the method is efficient and
that the explanations are intuitive and useful.
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1. Introduction

Acquisition of knowledge from data is the quintessential task of machine learning. The data are
often noisy, inconsistent, and incomplete, so various preprocessing methods are used before the
appropriate machine learning algorithm is applied. The knowledge we extract this way might not
be suitable for immediate use and one or moredata postprocessingmethods could be applied as
well. Data postprocessing includes the integration, filtering, evaluation, andexplanationof acquired
knowledge. The latter is the topic of this paper.

To introduce the reader with some of the concepts used in this paper, we start with a simple
illustrative example of an explanation for a model’s prediction (see Fig. 1). We use Naive Bayes
because its prediction can, due to the assumption of conditional independence, easily be transformed
into contributions of individual feature values- a vector of numbers, one for each feature value,
which indicates how much each feature value contributed to the Naive Bayesmodel’s prediction.
This can be done by simply applying the logarithm to the model’s equation (see, for example,
Kononenko and Kukar, 2007; Becker et al., 1997).

In our example, the contributions of the three feature values can be interpreted as follows. The
prior probability of a Titanic passenger’s survival is 32% and the model predicts a 67% chance of
survival. The fact that this passenger was female is the sole and largestcontributor to the increased
chance of survival. Being a passenger from the third class and an adult both speak against survival,
the latter only slightly. The actual class label for this instance is ”yes”, so theclassification is
correct. This is a trivial example, but providing the end-user with such anexplanation on top of a
prediction, makes the prediction easier to understand and to trust. The latter iscrucial in situations
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where important and sensitive decisions are made. One such example is medicine, where medical
practitioners are known to be reluctant to use machine learning models, despite their often superior
performance (Kononenko, 2001). The inherent ability of explaining its decisions is one of the
main reasons for the frequent use of the Naive Bayes classifier in medical diagnosis and prognosis
(Kononenko, 2001). The approach used to explain the decision in Fig. 1is specific to Naive Bayes,
but can we design an explanation method which works for any type of classifier? In this paper we
address this question and propose a method for explaining the predictions of classification models,
which can be applied to any classifier in auniform way.

Figure 1: An instance from the well-known Titanic data set with the Naive Bayes model’s predic-
tion and an explanation in the form of contributions of individual feature values. A copy
of the Titanic data set can be found at http://www.ailab.si/orange/datasets.psp.

1.1 Related Work

Before addressinggeneralexplanation methods, we list a fewmodel-specificmethods to emphasize
two things. First, most models have model-specific explanation methods. And second, providing an
explanation in the form of contributions of feature values is a common approach. Note that many
more model-specific explanation methods exist and this is far from being a complete reference.
Similar to Naive Bayes, other machine learning models also have an inherent explanation. For
example, a decision tree’s prediction is made by following a decision rule fromthe root to the leaf,
which contains the instance. Decision rules and Bayesian networks are also examples of transparent
classifiers. Nomograms are a way of visualizing contributions of feature values and were applied to
Naive Bayes (Mǒzina et al., 2004) and, in a limited way (linear kernel functions), to SVM (Jakulin
et al., 2005). Other related work focusses on explaining the SVM model, mostrecently in the
form of visualization (Poulet, 2004; Hamel, 2006) and rule-extraction (Martens et al., 2007). The
ExplainD framework (Szafron et al., 2006) provides explanations for additive classifiers in the form
of contributions. Breiman provided additional tools for showing how individual features contribute
to the predictions of his Random Forests (Breiman, 2001). The explanationand interpretation of
artificial neural networks, which are arguably one of the least transparent models, has also received
a lot of attention, especially in the form of rule extraction (Towell and Shavlik, 1993; Andrews et al.,
1995; Nayak, 2009).

So, why do we even need a general explanation method?It is not difficult to think of a rea-
sonable scenario where a general explanation method would be useful. For example, imagine a
user using a classifier and a corresponding explanation method. At some point the model might
be replaced with a better performing model of a different type, which usually means that the ex-
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planation method also has to be modified or replaced. The user then has to invest time and effort
into adapting to the new explanation method. This can be avoided by using a general explanation
method. Overall, a good general explanation method reduces the dependence between the user-end
and the underlying machine learning methods, which makes work with machine learning models
more user-friendly. This is especially desirable in commercial applications and applications of ma-
chine learning in fields outside of machine learning, such as medicine, marketing, etc. An effective
and efficient general explanation method would also be a useful tool forcomparing how a model
predicts different instances and how different models predict the same instance.

As far as the authors are aware, there exist two other general explanation methods for explaining
a model’s prediction: the work by Robnik-Šikonja and Kononenko (2008) and the work by Lemaire
et al. (2008). While there are several differences between the two methods, both explain a prediction
with contributions of feature values and both use the same basic approach.A feature value’s contri-
bution is defined as the difference between the model’s initial prediction and itsaverage prediction
across perturbations of the corresponding feature. In other words,we look at how the prediction
would change if we ”ignore” the feature value. This myopic approach canlead to serious errors
if the feature values are conditionally dependent, which is especially evident when a disjunctive
concept (or any other form of redundancy) is present. We can use asimple example to illustrate
how these methods work. Imagine we ask someone who is knowledgeable in boolean logicWhat
will the result of (1 OR 1) be?. It will be one, of course. Now we mask the first value and ask
againWhat will the result of (something OR1) be?. It will still be one. So, it does not matter if
the person knows or does not know the first value - the result does notchange. Hence, we conclude
that the first value is irrelevant for that persons decision regarding whether the result will be 1 or
0. Symmetrically, we can conclude that the second value is also irrelevant for the persons decision
making process. Therefore, both values are irrelevant. This is, of course, an incorrect explanation
of how these two values contribute to the persons decision.

Further details and examples of where existing methods would fail can be found in our previous
work (Štrumbelj et al., 2009), where we suggest observing the changes across all possible subsets
of features values. While this effectively deals with the shortcomings of previous methods, it suffers
from an exponential time complexity.

To summarize, we have existing general explanation methods, which sacrifice a part of their
effectiveness for efficiency, and we know that generating effective contributions requires observing
the power set of all features, which is far from efficient. The contribution of this paper and its im-
provement over our previous work is twofold. First, we provide a rigorous theoretical analysis of our
explanation method and link it with known concepts from game theory, thus formalizing some of its
desirable properties. And second, we propose an efficient sampling-based approximation method,
which overcomes the exponential time complexity and does not require retraining the classifier.

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts
from classification and coalitional game theory. In Section 3 we provide the theoretical foundations,
the approximation method, and a simple illustrative example. Section 4 covers the experimental part
of our work. With Section 5 we conclude the paper and provide ideas for future work.

2. Preliminaries

First, we introduce some basic concepts from classification and coalitional game theory, which are
used in the formal description of our explanation method.
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2.1 Classification

In machine learning classification is a form of supervised learning where the objective is to predict
theclass labelfor unlabelled input instances, each described by feature values froma feature space.
Predictions are based on background knowledge and knowledge extracted (that is, learned) from a
sample of labelled instances (usually in the form of a training set).

Definition 1 The feature spaceA is the cartesian product of n features (represented with the set
N = {1,2, ...,n}): A = A1×A2× ...×An, where each feature Ai is a finite set of feature values.

Remark 1 With this definition of a feature space we limit ourselves to finite (that is, discrete) fea-
tures. However, we later show that this restriction does not apply to the approximation method,
which can handle both discrete and continuous features.

To formally describe situations where feature values are ignored, we define a subspaceAS =
A′1×A′2× ...×A′n, whereA′i = Ai if i ∈ SandA′i = {ε} otherwise. Therefore, given a setS⊂ N, AS

is a feature subspace, where features not inSare ”ignored” (AN = A). Instances from a subspace
have one or more components unknown as indicated byε. Now we define a classifier.

Definition 2 A classifier, f , is a mapping from a feature space to a normalized|C|-dimensional
space f: A → [0,1]|C|, where C is a finite set of labels.

Remark 2 We use a more general definition of a classifier to include classifiers whichassign a
rank or score to each class label. However, in practice, we mostly deal with two special cases:
classifiers in the traditional sense (for each vector, one of the components is 1 and the rest are 0)
and probabilistic classifiers (for each vector, the vector components always add up to 1 and are
therefore a probability distribution over the class label state space).

2.2 Coalitional Game Theory

The following concepts from coalitional game theory are used in the formalization of our method,
starting with the definition of a coalitional game.

Definition 3 A coalitional form game is a tuple〈N,v〉, where N= {1,2, ...,n} is a finite set of n
players, and v: 2N→ℜ is a characteristic function such that v(∅) = 0.

Subsets ofN arecoalitionsandN is referred to as thegrand coalitionof all players. Functionv
describes theworthof each coalition. We usually assume that the grand coalition forms and the goal
is to split its worthv(N) among the players in a ”fair” way. Therefore, thevalue(that is, solution)
is an operatorφ which assigns to〈N,v〉 a vector of payoffsφ(v) = (φ1, ...,φn) ∈ℜn. For each game
with at least one player there are infinitely many solutions, some of which are more ”fair” than
others. The following four statements are attempts at axiomatizing the notion of ”fairness” of a
solutionφ and are key for the axiomatic characterization of the Shapley value.

Axiom 1 ∑
i∈N

φi(v) = v(N). (efficiency axiom)

Axiom 2 If for two players i and j v(S∪{i}) = v(S∪{ j}) holds for every S, where S⊂ N and
i, j /∈ S, thenφi(v) = φ j(v)). (symmetry axiom)

4



EXPLAINING INDIVIDUAL CLASSIFICATIONS

Axiom 3 If v(S∪{i}) = v(S) holds for every S, where S⊂ N and i /∈ S, thenφi(v) = 0. (dummy
axiom)

Axiom 4 For any pair of games v,w : φ(v+w) = φ(v)+φ(w), where(v+w)(S) = v(S)+w(S) for
all S. (additivity axiom)

Theorem 1 For the game〈N,v〉 there exists a unique solutionφ, which satisfies axioms 1 to 4 and
it is the Shapley value:

Shi(v) = ∑
S⊆N\{i},s=|S|

(n−s−1)!s!
n!

(v(S∪{i})−v(S)), i = 1, ...,n.

Proof For a detailed proof of this theorem refer to Shapley’s paper (1953).

The Shapley value has a wide range of applicability as illustrated in a recent survey paper by
Moretti and Patrone (2008), which is dedicated entirely to this unique solutionconcept and its
applications. From the few applications of the Shapley value in machine learning, we would like
to bring to the readers attention the work of Keinan et al. (2004), who applythe Shapley value to
function localization in biological and artificial networks. Their MSA framework is later used and
adapted into a method for feature selection (Cohen et al., 2007).

3. Explaining Individual Predictions

In this section we provide the theoretical background. We start with a description of the intuition
behind the method and then link it with coalitional game theory.

3.1 Definition of the Explanation Method

Let N = {1,2, ...,n} be a set representingn features,f a classifier, andx = (x1,x2, ...,xn) ∈ A an
instance from the feature space. First, we choose a class label. We usually chose the predicted class
label, but we may choose any other class label that is of interest to us and explain the prediction
from that perspective (for example, in the introductory example in Fig. 1 wecould have chosen
”survival = no” instead). Letc be the chosen class label and letfc(x) be the prediction component
which corresponds toc. Our goal is to explain how the given feature values contribute to the
prediction differencebetween the classifiers prediction for this instance and the expected prediction
if no feature values are given (that is, if all feature values are ”ignored”). The prediction difference
can be generalized to an arbitrary subset of featuresS⊆ N.

Definition 4 The prediction difference∆(S) when only values of features represented in S are
known, is defined as follows:

∆(S) =
1

|AN\S|
∑

y∈AN\S

fc(τ(x,y,S))−
1
|AN|

∑
y∈AN

fc(y), (1)

τ(x,y,S) = (z1,z2, ...,zn), zi =

{

xi ; i ∈ S
yi ; i /∈ S.
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Remark 3 In our previous work (̌Strumbelj et al., 2009) we used a different definition:∆(S) =
f ∗c (S)− f ∗c (∅), where f∗(W) is obtained by retraining the classifier only on features in W and
re-classifying the instance (similar to the wrappers approach in feature selection Kohavi and John
1997). With this retraining approach we avoid the combinatorial explosion of going through all
possible perturbations of ”ignored” feature’s values, but introduce other issues. However, the ex-
ponential complexity of going through all subsets of N still remains.

The expression∆(S) is the difference between the expected prediction when we know only those
values ofx, whose features are inS, and the expected prediction when no feature values are known.
Note that we assume uniform distribution of feature values. Therefore, we make no assumption
about the prior relevance of individual feature values. In other words, we are equally interested in
each feature value’s contribution. The main shortcoming of existing general explanation methods
is that they do not take into account all the potential dependencies and interactions between feature
values. To avoid this issue, we implicitly define interactions by defining that each prediction dif-
ference∆(S) is composed of 2N contributions of interactions (that is, each subset of feature values
might contribute something):

∆(S) = ∑
W⊆S

I (W), S⊆ N. (2)

AssumingI (∅) = 0 (that is, an interaction of nothing always contributes 0) yields a recursive
definition. Therefore, functionI , which describes the interactions, always exists and is uniquely
defined for a givenN and function∆:

I (S) = ∆(S)− ∑
W⊂S

I (W), S⊆ N. (3)

Now we distribute the interaction contributions among then feature values. For each interaction
the involved feature values can be treated as equally responsible for the interaction as the interaction
would otherwise not exist. Therefore, we define a feature value’s contribution ϕi by assigning it an
equal share of each interaction it is involved in

ϕi(∆) = ∑
W⊆N\{i}

I (W∪{i})
|W∪{i}|

, i = 1,2, ...,n. (4)

It is not surprising that we manage in some way to uniquely quantify all the possible interactions,
because we explore the entire power set of the involved feature values.So, two questions arise:Can
we make this approach computationally feasible?andWhat are the advantages of this approach
over other possible divisions of contributions?. We now address both of these issues, starting with
the latter.

Theorem 2 〈N = {1,2, ...,n},∆〉 is a coalitional form game andϕ(∆) = (ϕ1,ϕ2, ...,ϕn) corre-
sponds to the game’s Shapley value Sh(∆).

Proof Following the definition of∆ we get that∆(∅) = 0, so the explanation of the classifier’s
prediction can be treated as a coalitional form game〈N,∆〉. Now we provide an elementary proof
that the contributions of individual feature values correspond to the Shapley value for the game
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〈N,∆〉. The recursive definition ofI given in Eq. (3) can be transformed into its non-recursive
form:

I (S) = ∑
W⊆S

((−1)|S|−|W|∆(W)). (5)

Eq. (5) can be proven by induction. We combine Eq. (4) and Eq. (5) into the following
non-recursive formulation of the contribution of a feature value:

ϕi(∆) = ∑
W⊆N\{i}

∑
Q⊆(W∪{i})

((−1)|W∪{i}|−|Q|∆(Q))

|W∪{i}|
. (6)

Let us examine the number of times∆(S∪{i}), S⊆ N, i /∈ S , appears on the right-hand side of
Eq. (6). LetM∆(S∪{i}) be the number of all such appearances andk= n−|S|−1. The term∆(S∪{i})
appears whenS⊆W and only once for each suchW. For W, whereS⊆W and |W| = |S|+ a,
∆(S∪{i}) appears with an alternating sign, depending on the parity ofa, and there are exactly

(k
a

)

suchW in the sum in Eq. (6), because we can use any combination ofa additional elements from
the remainingk elements that are not already in the setS. If we write all such terms up toW = N
and take into account that each interactionI (W) is divided by|W|, we get the following series:

The treatment is similar for∆(S), i /∈ Swhere we getM∆(S) =−V(n,k). The seriesV(n,k) can
be expressed with the beta function:

(1−x)k =

(

k
0

)

−

(

k
1

)

x+

(

k
2

)

x2− ...±

(

k
k

)

xk

Z 1

0
xn−k−1(1−x)k dx=

Z 1

0
(

(

k
0

)

xn−k−1−

(

k
1

)

xn−k + ...±

(

k
n−1

)

xn−1)dx

B(n−k,k+1) =

(k
0

)

n−k
−

(k
1

)

n−k+1
+ ...±

(k
k

)

n
= V(n,k).

UsingB(p,q) = Γ(p)Γ(q)
Γ(p+q) , we getV(n,k) = (n−k−1)!k!

n! . Therefore:

ϕi(∆) = ∑
S⊆N\{i}

V(n,n−s−1) ·∆(S∪{i})− ∑
S⊆N\{i}

V(n,n−s−1) ·∆(S) =

= ∑
S⊆N\{i}

(n−s−1)!s!
n!

· (∆(S∪{i})−∆(S)).

So, the explanation method can be interpreted as follows. The instance’s feature values form a
coalition which causes a change in the classifier’s prediction. We divide thischange amongst the
feature values in a way that is fair to their contributions across all possible sub-coalitions. Now
that we have established that the contributions correspond to the Shapley value, we take another
look at its axiomatization. Axioms 1 to 3 and their interpretation in the context of ourexplanation
method are of particular interest. The 1st axiom corresponds to our decomposition in Eq. (2) - the
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sum of alln contributions in an instance’s explanation is equal to the difference in prediction ∆(N).
Therefore, the contributions are implicitly normalized, which makes them easierto compare across
different instances and different models. According to the 2nd axiom, if two features values have an
identical influence on the prediction they are assigned contributions of equal size. The 3rd axiom
says that if a feature has no influence on the prediction it is assigned a contribution of 0. When
viewed together, these properties ensure that any effect the featuresmight have on the classifiers
output will be reflected in the generated contributions, which effectively deals with the issues of
previous general explanation methods.

3.1.1 AN ILLUSTRATIVE EXAMPLE

In the introduction we used a simple boolean logic example to illustrate the shortcomings of ex-
isting general explanation methods. We concluded that in the expression (1OR 1) both values are
irrelevant and contribute nothing to the result being 1. This error results from not observing all
the possible subsets of features. With the same example we illustrate how our explanation method
works. We writeN = {1,2}, A = {0,1}×{0,1}, andx = (1,1). In other words, we are explaining
the classifier’s prediction for the expression(1 OR 1). Following the steps described in Section 3,
we use Eq. (1) to calculate the∆−terms. Intuitively,∆(S) is the difference between the classifiers
expected prediction if only values of features inSare known and the expected prediction if no values
are known. If the value of at least one of the two features is known, we can predict, with certainty,
that the result is 1. If both values are unknown (that is, masked) one canpredict that the probability
of the result being 1 is34. Therefore,∆(1) = ∆(2) = ∆(1,2) = 1− 3

4 = 1
4 and∆(∅) = 3

4−
3
4 = 0.

Now we can calculate the interactions.I (1) = ∆(1) = 1
4 andI (2) = ∆(2) = 1

4. When observed
together, the two features contribute less than their individual contributions would suggest, which
results in a negative interaction:I (1,2) = ∆(1,2)− (I (1) + I (2)) = −1

4. Finally, we divide the

interactions to get the final contributions:ϕ1 = I (1)+ I (1,2)
2 = 1

8 andϕ2 = I (2)+ I (1,2)
2 = 1

8. The
generated contributions reveal that both features contribute the same amount towards the prediction
being 1 and the contributions sum up to the initial difference between the prediction for this instance
and the prior belief.

3.2 An Approximation

We have shown that the generated contributions,ϕi , are effective in relating how individual fea-
ture values influence the classifier’s prediction. Now we provide an efficient approximation. The
approximation method is based on a well known alternative formulation of the Shapley value. Let
π(N) be the set of all ordered permutations ofN. Let Prei(O) be the set of players which are pre-
decessors of playeri in the orderO ∈ π(N). A feature value’s contribution can now be expressed
as:

ϕi(∆) =
1
n! ∑

O∈π(N)

(

∆(Prei(O)∪{i})−∆(Prei(O))
)

, i = 1, ...,n. (7)

Eq. (7) is the a well-known alternative formulation of the Shapley value. An algorithm for the
computation of the Shapley value, which is based on Eq. (7), was presented by Castro et al. (2008).
However, in our case, the exponential time complexity is still hidden in our definition of ∆ (see
Eq. (1)). If we use the alternative definition used in our previous work (see Remark 3), we can
compute function∆(S), for a givenS, in polynomial time (assuming that the learning algorithm has
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a polynomial time complexity). However, this requires retraining the classifier for eachS⊆ N, so
the method would no longer be independent of the learning algorithm and we would also require
the training set that the original classifier was trained on. To avoid this and still achieve an efficient
explanation method, we extend the sampling algorithm in the following way. We usea different,
but equivalent formulation of Eq. (1). While the sum in this equation redundantly counts each
f (τ(x,y,S)) term |AS| times (instead of just once) it is equivalent to Eq. (1) and simplifies the
sampling procedure:

∆(S) =
1
|A | ∑y∈A

( f (τ(x,y,S))− f (y)) . (8)

We replace occurrences of∆ in Eq. (7) with Eq. (8):

ϕi(∆) =
1

n! · |A | ∑
O∈π(N)

∑
y∈A

(

f (τ(x,y,Prei(O)∪{i}))− f (τ(x,y,Prei(O)))
)

.

We use the following sampling procedure. Our sampling population isπ(N)×A and each
order/instance pair defines one sampleXO,y∈A = f (τ(x,y,Prei(O)∪{i}))− f (τ(x,y,Prei(O))). If
some features are continuous, we have an infinite population, but the properties of the sampling
procedure do not change. If we draw a sample completely at random thenall samples have an
equal probability of being drawn (1n!·|A | ) andE[XO,y∈A ] = ϕi . Now consider the case wherem such

samples are drawn (with replacement) and observe the random variableϕ̂i =
1
m ∑m

j=1Xj , whereXj is
the j−th sample. According to the central limit theorem,ϕ̂i is approximately normally distributed

with meanϕi and varianceσ2
i

m , whereσ2
i is the population variance for thei−th feature. Therefore,

ϕ̂i is an unbiased and consistent estimator ofϕi . The computation is summarized in Algorithm 1.

Algorithm 1 Approximating the contribution of thei-th feature’s value,ϕi , for instancex∈ A .
determinem, the desired number of samples
ϕi ← 0
for j = 1 tom do

choose a random permutation of featuresO ∈ π(N)
choose a random instancey∈ A
v1← f (τ(x,y,Prei(O)∪{i}))
v2← f (τ(x,y,Prei(O)))
ϕi ← ϕi +(v1−v2)

end for
ϕi ←

ϕi
m

{v1 and v2 are the classifier’s predictions for two instances, which are constructedby taking
instancey and then changing the value of each feature which appears before thei-th feature in
orderO (for v1 this includes thei−th feature) to that feature’s value inx. Therefore, these two
instances only differ in the value of thei−th feature.}
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3.2.1 ERROR/SPEEDTRADEOFF

We have established an unbiased estimator of the contribution. Now we investigate the relationship
between the number of samples we draw and the approximation error. For each ϕi , the number
of samples we need to draw to achieve the desired error, depends only onthe population variance
σ2

i . In practice,σ2
i is usually unknown, but has an upper bound, which is reached if the population

is uniformly distributed among its two extreme values. According to Eq. (1), the maximum and
minimum value of a single sample are 1 and−1, respectively, soσ2

i ≤ 1. Let the tuple〈1−α,e〉
be a description of the desired error restriction andP(|ϕi − ϕ̂i | < e) = 1−α the condition, which
has to be fulfilled to satisfy the restriction. For any given〈1−α,e〉, there is a constant number

of samples we need to satisfy the restriction:mi(〈1−α,e〉) =
Z2

1−α·σ
2

e2 , whereZ2
1−α is the Z-score,

which corresponds to the 1−α confidence interval. For example, we want 99% of the approximated
contributions to be less than 0.01 away from their actual values and we assume worst-case variance
σ2

i = 1, for eachi ∈ N. Therefore, we have to draw approximately 65000 samples per feature,
regardless of how large the feature space is. The variances are much lower in practice, as we show
in the next section.

For each feature value, the number of samplesmi(〈1−α,e〉) is a linear function of the sample
varianceσ2

i . The key to minimizing the number of samples is to estimate the sample varianceσ2
i and

draw the appropriate number of samples. This estimation can be done during the sampling process,
by providing confidence intervals for the required number of samples, based on our estimation of
variance on the samples we already took. While this will improve running times, it will not have
any effect on the time complexity of the method, so we delegate this to further work. The optimal

(minimal) number of samples we need for the entire explanation is:mmin(〈1−α,e〉) = n ·
Z2

1−α·σ2

e2 ,

whereσ2 = 1
n ∑n

i=1 σ2
i . Therefore, the numbern·σ2, whereσ2 is estimated across several instances,

gives a complete description of how complex a model’s prediction is to explain (that is, proportional
to how many samples we need).

A note on the method’s time complexity. When explaining an instance, the sampling process
has to be repeated for each of then feature values. Therefore, for a given error and confidence level,
the time complexity of the explanation isO(n ·T(A)), where functionT(A) describes the instance
classification time of the model onA . For most machine learning modelsT(A)≤ n.

4. Empirical Results

The evaluation of the approximation method is straightforward as we focus only on approximation
errors and running times. We use a variety of different classifiers both toillustrate that it is indeed
a general explanation method and to investigate how the method behaves with different types of
classification models. The following models are used: a decision tree (DT), aNaive Bayes (NB),
a SVM with polynomial kernel (SVM), a multi-layer perceptron artificial neural network (ANN),
Breiman’s random forests algorithm (RF), logistic regression (logREG),and ADABoost boosting
with either Naive Bayes (bstNB) or a decision tree (bstDT) as the weak learner. All experiments
were done on an off-the-shelf laptop computer (2GHz dual core CPU, 2GB RAM), the explanation
method is a straightforward Java implementation of the equations presented in thispaper, and the
classifiers were imported from the Weka machine learning software (http://www.cs.waikato.
ac.nz/ ˜ ml/weka/index.html ).
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model # instances # features (n) max(σ2
i ) max(σ2) n· max(σ2)

CondInd 2000 8 0.25 0.06 0.48
Xor 2000 6 0.32 0.16 0.96
Group 2000 4 0.30 0.16 0.64
Cross 2000 4 0.43 0.14 0.92
Chess 2000 4 0.44 0.22 0.88
Sphere 2000 5 0.21 0.13 0.65
Disjunct 2000 5 0.10 0.06 0.30
Random 2000 4 0.19 0.12 0.48
Oncology 849 13 0.16 0.08 1.04
Annealing 798 38 0.08 0.02 0.76
Arrhythymia 452 279 0.03 10−3 0.28
Breast cancer 286 9 0.22 0.10 0.90
Hepatitis 155 19 0.20 0.05 0.95
Ionosphere 351 34 0.20 0.04 1.36
Iris 150 4 0.23 0.10 0.40
Monks1 432 6 0.29 0.12 0.72
Monks2 432 6 0.31 0.27 1.62
Monks3 432 6 0.20 0.07 0.42
Mushroom 8124 22 0.24 0.05 1.10
Nursery 12960 8 0.22 0.03 0.24
Soybean 307 35 0.20 0.01 0.35
Thyroid 7200 21 0.18 0.02 0.42
Zoo 101 17 0.25 0.02 0.14

Table 1: List of data sets used in our experiments. The variance of the mostcomplex feature value
and the variance of most complex model to explain are included.

The list of data sets used in our experiments can be found in Table 1. The first 8 data sets are
synthetic data sets, designed specifically for testing explanation methods (see Robnik-̌Sikonja and
Kononenko, 2008;̌Strumbelj et al., 2009). The synthetic data sets contain the following concepts:
conditionally independent features (CondInd), the xor problem (Xor,Cross, Chess), irrelevant fea-
tures only (Random), disjunction (Disjunct, Sphere), and spatially clustered class values (Group).
The Oncology data set is a real-world oncology data set provided by the Institute of Oncology,
Ljubljana. To conserve space, we do not provide all the details about thisdata set, but we do use an
instance from it as an illustrative example. Those interested in a more detailed description of this
data set and how our previous explanation method is successfully applied inpractice can refer to
our previous work (̌Strumbelj et al., 2009). The remaining 14 data sets are from the UCI machine
learning repository (Asuncion and Newman, 2009).

The goal of our first experiment is to illustrate how approximated contributions converge to the
actual values. The fact that they do is already evident from the theoretical analysis. However, the
reader might find useful this additional information about the behavior of the approximation error.
The following procedure is used. For each data set we use half of the instances for training and
half for testing the explanation method. For each data set/classifier pair, we train the classifier on
the training set and use both the explanation method and its approximation on each test instance.
For the approximation method the latter part is repeated several times, each time with a different
setting of how many samples are drawn per feature. Only synthetic data sets were used in this
procedure, because the smaller number of features allows us to compute theactual contributions.
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Figure 2: Mean, 99th-percentile, and maximum errors for several data set/classifier pairs and across
different settings of how many samples are drawn per feature. Note that the error is the
absolute difference between the approximated and actual contribution of afeature’s value.
The maximum error is the largest such observed difference across all instances.

Some of the results of this experiment are shown in Fig. 2. We can see that it only takes about a
thousand of samples per feature to achieve a reasonably low approximationerror. When over 10000
samples are drawn, all the contributions across all features and all test instances are very close to the
actual contributions. From the discussion of the approximation error, we can see that the number
of samples depends on the variance in the model’s output, which in turn directlydepends on how
much the model has learned. Therefore, it takes only a few samples for a good approximation when
explaining a model which has acquired little or no knowledge. This might be either due to the model
not being able to learn the concepts behind the data set or because there are no concepts to learn.
A few such examples are the Naive Bayes model on the Group data set (model’s accuracy: 0.32,
relative freq. of majority class: 0.33), the Decision Tree on Monks2 (acc. 0.65 , rel. freq. 0.67), and
Logistic Regression on the Random data set (acc. 0.5 , rel. freq. 0.5). On the other hand, if a model
successfully learns from the data set, it requires more samples to explain. For example, Naive Bayes
on CondInd (acc. 0.92 , rel. freq. 0.50) and a Decision Tree on Sphere (acc. 0.80 , rel. freq. 0.50).
In some cases a model acquires incorrect knowledge or over-fits the data set. One such example is
the ANN model, which was allowed to over-fit the Random data set (acc. 0.5 ,rel. freq. 0.5). In
this case the method explains what the model has learned, regardless of whether the knowledge is
correct or not. And although the explanations would not tell us much aboutthe concepts behind
the data set (we conclude from the model’s performance, that it’s knowledge is useless), they would
reveal what the model has learned, which is the purpose of an explanation method.

In our second experiment we measure sample variances and classificationrunning times. These
will provide insight into how much time is needed for a good approximation. We use the same
procedure as before, on all data sets, using only the approximation method. We draw 50000 samples
per feature. Therefore, the total number of samples for each data set/classifier pair is: 50000n times
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Figure 3: Visualization of explanation running times across all data set/classifier pairs.

the number of test instances, which is sufficient for a good estimate of classification times and
variances. The maximumσ2

i in Table 1 reveal that the crisp features of synthetic data sets have
higher variance and are more difficult to explain than features from real-world data sets. Explaining
the prediction of the ANN model for an instance Monks2 is the most complex explanation (that
is, requires the most samples - see Fig. 2), which is understandable giventhe complexity of the
Monks2 concept (class label = 1 iff exactly two feature values are 1). Note that most maximum
values are achieved when explaining ANN.

From the data gathered in our second experiment, we generate Fig. 3, which shows the time
needed to provide an explanation with the desired error〈99%,0.01〉. For smaller data sets (smaller in
the number of features) the explanation is generated almost instantly. For larger data sets, generating
an explanation takes less than a minute, with the exception of bstNB on a few datasets and the ANN
model on the Mushroom data set. These two models require more time for a singleclassification.

The Arrhythmia data set, with its 279 features, is an example of a data set, where the explanation
can not be generated in some sensible time. For example, it takes more than an hour to generate
an explanation for a prediction of the bstNB model. The explanation method is therefore less ap-
propriate for explaining models which are built on several hundred features or more. Arguably,
providing a comprehensible explanation involving a hundred or more features is a problem in its
own right and even inherently transparend models become less comprehensible with such a large
number of features. However, the focus of this paper is on providing aneffective and general expla-
nation method, which is computationally feasible on the majority of data sets we encounter. Also
note that large data sets are often reduced to a smaller number of features inthe preprocessing step
of data acquisition before a learning algorithm is applied. Therefore, when considering the number
of features the explanation method can still handle, we need not count irrelevant features, which are
not included in the final model.

4.1 Example Explanation

Unlike running times and approximation errors, the usefulness and intuitiveness of the generated
explanations is a more subjective matter. In this section we try to illustrate the usefulness of the
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(a) NB model (b) bstDT model

Figure 4: The boosting model correctly learns the concepts of the Monks1data set, while Naive
Bayes does not and misclassifies this instance.

method’s explanations with several examples. When interpreting the explanations, we take into
account both the magnitude and the sign of the contribution. If a feature-value has a larger contribu-
tion than another it has a larger influence on the model’s prediction. If a feature-value’s contribution
has a positive sign, it contributes towards increasing the model’s output (probability, score, rank,
...). A negative sign, on the other hand, means that the feature-value contributes towards decreas-
ing the model’s output. An additional advantage of the generated contributions is that they sum
up to the difference between the model’s output prediction and the model’s expected output, given
no information about the values of the features. Therefore, we can discern how much the model’s
output moves when given the feature values for the instance, which features are responsible for this
change, and the magnitude of an individual feature-value’s influence.These examples show how
the explanations can be interpreted. They were generated for various classification models and data
sets, to show the advantage of having a general explanation method.

The first pair of examples (see Fig. 4) are explanations for an instance from the first of the
well-known Monks data sets. For this data set the class label is 1 iff attr1 andattr2 are equal
or attr5 equals 1. The other 3 features are irrelevant. The NB model, due toits assumption of
conditional independence, does not learn the importance of equality between the first two features
and misclassifies the instance. However, both NB and bstDT learn the importance of the fifth feature
and explanations reveal that value 2 for the fifth feature speaks against class 1.

The second pair of examples (see Fig. 5) is from the Zoo data set. Both models predict that
the instance represents a bird. Why? The explanations reveal that DT predicts this animal is a bird,
because it has feathers. The more complex RF model predicts its a bird, because it has two legs,
but also because the animal is toothless, with feathers, without hair, etc... These first two pairs of
examples illustrate how the explanations reflect what the model has learnt and how we can compare
explanations from different classifiers.

In our experiments we are not interested in the prediction quality of the classifiers and do not put
much effort into optimizing their performance. Some examples of underfitting and overfitting are
actually desirable as they allow us to inspect if the explanation method reveals what the classifier
has (or has not) learned. For example, Fig. 6(a) shows the explanation of the logREG model’s
prediction for an instance from the Xor data set. Logistic regression is unable to learn the exclusive-
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(a) DT model (b) RF model

Figure 5: Explanations for an instance from the Zoo data set. The DT model uses a single feature,
while several feature values influence the RT model. Feature values with contributions
≤ 0.01 have been removed for clarity.

or concept of this data set (for this data set the class label is the odd paritybit for the first three
feature values) and the explanation is appropriate. On the other hand, SVM manages to overfit the
Random data set and finds concepts where there are none (see Fig. 6(b)).

Fig. 7(a) is an explanation for ANN’s prediction for the introductory instance from the Titanic
data set (see Fig. 1). Our explanation for the NB model’s prediction (Fig. 7(b)) is very similar to the
inherent explanation (taking into account that a logarithm is applied in the inherent explanation).
The ANN model, on the other hand, predicts a lower chance of survival, because being a passenger
from the 3rd class has a much higher negative contribution for ANN.

Our final example illustrates how the method can be used in real-world situations. Fig. 8 is an
explanation for RT’s prediction regarding whether breast cancer will (class = 1) or will not (class
= 2) recur for this patient. According to RF it is more likely that cancer will notrecur and the
explanation indicates that this is mostly due to a low number of positive lymph nodes(nLymph).
The lack of lymphovascular invasion (LVI) or tissue invasion (invasive)also contributes positively.
A high ratio of removed lymph nodes was positive (posRatio) has the only significant negative
contribution. Oncologists found this type of explanation very useful.

5. Conclusion

In the introductive section, we asked if an efficient and effective general explanation method for
classifiers’ predictions can be made. In conclusion, we can answer yes. Using only the input and
output of a classifier we decompose the changes in its prediction into contributions of individual
feature values. These contributions correspond to known concepts from coalitional game theory.
Unlike with existing methods, the resulting theoretical properties of the proposed method guarantee
that no matter which concepts the classifier learns, the generated contributions will reveal the influ-
ence of feature values. Therefore, the method can effectively be used on any classifier. As we show
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(a) logREG model (b) SVM model

Figure 6: The left hand side explanation indicates that the feature values have no significant influ-
ence on the logREG model on the Xor data set. The right hand side explanation shows
how SVM overfits the Random data set.

(a) ANN model (b) NB model

Figure 7: Two explanations for the Titanic instance from the introduction. The left hand side ex-
planation is for the ANN model. The right hand side explanation is for the NB model.

Figure 8: An explanation or the RF model’s prediction for a patient from the Oncology data set.
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on several examples, the method can be used to visually inspect models’ predictions and compare
the predictions of different models.

The proposed approximation method successfully deals with the initial exponential time com-
plexity, makes the method efficient, and feasible for practical use. As partof further work we intend
to research whether we can efficiently not only compute the contributions, which already reflect
the interactions, but also highlight (at least) the most important individual interactions as well. A
minor issue left to further work is extending the approximation with an algorithm for optimizing the
number of samples we take. It would also be interesting to explore the possibilityof applying the
same principles to the explanation of regression models.

References

Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of techniques for
extracting rules from trained artificial neural networks.Knowledge-Based Systems, 8:373–389,
1995.

Artur Asuncion and David J. Newman. UCI Machine Learning Repository,http://www.ics.uci.
edu/ ˜ mlearn/MLRepository.html , 2009.

Barry Becker, Ron Kohavi, and Dan Sommerfield. Visualizing the simple bayesian classier. InKDD
Workshop on Issues in the Integration of Data Mining and Data Visualization, 1997.

Leo Breiman. Random forests.Machine Learning Journal, 45:5–32, 2001.
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