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Abstract— We present a method for explaining predictions for
individual instances. The presented approach is general and can
be used with all classification models that output probabilities. It
is based on decomposition of a model’s predictions on individual
contributions of each attribute. Our method works for so called
black box models such as support vector machines, neural net-
works, and nearest neighbor algorithms as well as for ensemble
methods, such as boosting and random forests. We demonstrate
that the generated explanations closely follow the learned models
and present a visualization technique which shows the utility of
our approach and enables the comparison of different prediction
methods.
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I. INTRODUCTION

One of important requirements for predictors, both in clas-

sification and regression, is the transparency of the prediction

process. The user of the prediction model is often interested not

only in the prediction accuracy but also in the explanation of the

prediction for a given new case. For example, in our recent work

on medical data physicians were mostly interested in explanation

capabilities of learned models. Expectations of a study were to

get for each new patient a prognosis and its explanation. Such

an explanation of a model’s decision on the level of individual

instance is therefore main motivation of the presented work.

We propose a general explanation method that is in principle

independent of the model. The model can be generated manually

or learned automatically, it can be transparent or black box (such

as support vector machines (SVM) and artificial neural networks

(ANN)), and it can be a single model or an ensemble of models

(such as boosting and random forests).

We distinguish between two levels of explanation: the domain
level and the model level. The domain level tries to find the

true causal relationship between the dependent and independent

variables. Typically this level is unreachable unless we are dealing

with artificial domains where all the relations as well as the

probability distributions are known in advance. On the other

hand, the model level explanation aims to make transparent

the prediction process of a particular model. The prediction

accuracy and the correctness of explanation at the model level

are orthogonal: the correctness of the explanation is independent

of the correctness of the prediction. However, we may assume

that better models (with higher prediction accuracy) enable in

principle better explanation at the domain level. However, this

work is interested in the explanation at the model level and leave

to the developer of the model the responsibility for its prediction

accuracy. In this paper we talk about

• instance explanation: explanation of a classification of a

single instance at the model level,

• model explanation: averages of explanations over many train-

ing instances at the model level, which provide more general

explanations of features and features’ values relevances,

• domain explanation: still unknown, although, if the accuracy

of the model is high, it should be quite similar to the model

explanation.

A. Notation and Organization

Throughout the paper we use a notation where each of the

n learning instances is represented by an ordered pair (x, y);

each vector of attribute values x consists of individual values

of attributes Ai, i = 1, ..., a (a is the number of attributes), and is

labeled with y. In case of classification, y is one of the discrete

class values yj , j = 1, ..., c (c is the number of class values). We

write p(yj) for the probability of the class value yj . Each discrete

attribute Ai has values a1, ..., ami (mi is the number of values

of the attribute Ai). p(aj) is a probability of value aj .

The paper is organized into 6 sections. In Section 2 we formally

introduce our explanation principle, define several interpretations

and give implementation details. In Section 3 we demonstrate the

visualization method for individual instances and for the whole

model. In Section 4 we use several artificial data sets to show

that explanations are close to the models and give some advice

for the use of our approach. Section 5 presents the related work

and Section 6 summarizes and gives some ideas for further work.

II. DECOMPOSITION OF THE PREDICTION

Assume for a moment that we can observe the inner workings

of the decision process which forms the relationship between the

features and the predicted value. In other words, assume that we

can observe a causal effect the change of an attribute’s value has

on the predicted value. By measuring such an effect we could

reason about the importance of the attribute’s values, and we

could determine which values are the thresholds for the change of

prediction. In practice, this is usually impossible, but we can use

our model and data sample and try to approximate this reasoning.

We consider the model as a function mapping instances into

numerical values f : x �→ f(x). For classification these numerical

values are the probabilities of the class values. An instance x

has a known value for each attribute Ai. To see the effect the

attribute values have on prediction of the instance we decompose

the prediction on individual attributes’ values and observe the

model’s prediction f(x\Ai). In other words, we observe the

model’s prediction for x without the knowledge of event Ai = ak
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(marginal prediction), where ak is the value of Ai for our instance

x. By comparing the values f(x) and f(x\Ai) we get insight into

the importance of event Ai = ak. If the difference between f(x)

and f(x\Ai) is large, the fact Ai = ak plays an important role in

the model; if this difference is small, the influence of Ai = ak in

the model is minor. The source of our explanations are therefore

the decompositions

predDiffi(x) = f(x) − f(x\Ai) (1)

By restricting our reasoning to the model we provide explana-

tions also for events where the change in more than one attribute

at once affects the predicted value. For such events each of

dependent attributes Ai affects the prediction and so also the score

predDiffi(x), therefore the explanations for all Ai are nonzero. In

this way the generated explanations not only provide information

about simple one-attribute-at-a-time dependencies (as it may look

at first sight) but also about complex multi-attribute dependencies,

as long they are expressed in a given model. We provide a worked

example at the end of this Section.

In evaluation of prediction difference (1) we have several op-

tions. For classification we present the information difference, the

weight of evidence, and the difference between the probabilities.

Normally one of these evaluations is sufficient, but each has its

favorable properties and weaknesses which we explain below and

analyze also in Section 4.

A. Evaluation of Prediction Differences in Classification

In classification the model is a mapping from the instance

space to probabilities of the class values. The difference can be

evaluated in (at least) three different ways. The first is based on

the notion of information [1]. The second one is defined with the

log odds or equivalently the weight of evidence [2]. The third one

is a direct difference between the probabilities. Below we define

these interpretations for an instance x and its value of attribute

Ai.

1) Information Difference: The information difference for the

class value y is defined as the difference between the amount of

information, necessary to find out that y is true for the given

instance with the knowledge about the value of Ai, and the

amount of information, necessary to find out that y is true for

the given instance without the knowledge about the value of Ai:

infDiffi(y|x) = log2 p(y|x) − log2 p(y|x\Ai) [bit] (2)

The notion of information is frequently used, so this interpre-

tation of the difference in information between two events is

comprehensible. Because logarithm is asymmetric in the range of

probabilities [0, 1], we get asymmetric results for complementary

probabilities (p and 1 − p) in e.g. two class problems.

2) Weight of Evidence: The odds of event z is defined as the

ratio of the probability of event z and its negation:

odds(z) =
p(z)

p(z)
=

p(z)

1 − p(z)

The weight of evidence for class value y is defined as the log odds

of the model’s probability with the knowledge about the value of

Ai and without it:

WEi(y|x) = log2(odds(y|x)) − log2(odds(y|x\Ai)) [bit] (3)

The weight of evidence is an alternative view on information [2]

with similar properties (sometimes favorable, e.g. symmetry). In

logistic regression where it is commonly used [3] it is referred to

as log odds-ratio.

3) Difference of Probabilities: Another possibility is to evalu-

ate the difference between probabilities directly. The probability

difference is the difference in prediction of the model having the

knowledge about the value of Ai and without it.

probDiffi(y|x) = p(y|x) − p(y|x\Ai) (4)

It may not be wise to use the difference between probabilities

directly, without normalization, as humans are known not to be

very good at comprehension and evaluation of probabilities [4].

This is especially true for probabilities close to 0 and 1. The good

thing about this method is its simplicity and the fact that we do

not need any corrections for probabilities 0 and 1.

B. Implementation

To get the explanation factors we have to evaluate either (2),

(3), or (4). To compute factor p(y|x) we just classify the instance

x with the model. The only condition the model has to satisfy

is that it outputs class probabilities. The majority of statistical

and machine learning modeling techniques satisfy this condition

directly or with appropriate post-modeling calibration.

The factors p(y|x\Ai) (or f(x\Ai)) are a bit more tricky. The

simplest, but not always the best option is to replace the value of

attribute Ai with a special unknown value (NA, don’t know, don’t

care, etc.). This special value does not contain any information of

Ai, indeed. However, this method is appropriate only for modeling

techniques which handle unknown values naturally, e.g., naive

Bayesian classificator (NB) just omits the attribute with unknown

value from the computation. For other models we have to bear in

mind that while this approach is simple and seemingly correct,

we are left to the mercy of each method’s internal mechanism

for handling these special values1. The techniques for handling

unknown values are very different: from replacement with the

most frequent value for nominal attributes and with median for

numerical attributes to complex model-based implantations. To

avoid the dependence on the implementation of the model, we

propose an approach which simulates the lack of information

about Ai with several predictions.

For nominal attributes we replace the actual value Ai = ak

with all possible values of Ai, and weight each prediction by the

prior probability of the value2:

p(y|x\Ai) =

mi∑
s=1

p(Ai = as|x\Ai)p(y|x ← Ai = as) (5)

p(y|x\Ai)
.
=

mi∑
s=1

p(Ai = as)p(y|x ← Ai = as) (6)

Here the term p(y|x ← Ai = as) represents the probability we

get for y when in x we replace the value of Ai with as. Note our

simplification of the prior probability p(Ai = as) which implies

that (6) is only an approximation.

This method as it may seem ad-hoc at first sight is actually

exactly what NB does. As we mentioned, for NB to compute

1In the R system, which we used as our testing environment, the default
behavior of many learning models is to fail when predicting an input with
NA values, but of course many methods exist how to handle them.

2The use of this method therefore assumes that we have access to the prior
probabilities of the values also during explanation.
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p(y|x\Ai), all we have to do, is to ignore the value of attribute

Ai in computation. In Appendix we prove that for NB the method

(6) is equivalent to excluding the attribute Ai from computation.

For numerical attributes the procedure is similar; we use a

discretization method to split the values of Ai into sub-intervals.

The middle points of these sub-intervals are taken as the rep-

resentative replacement values in (6) for which we compute

predictions p(y|x ← Ai = as). Instead of prior probabilities of

single values p(Ai = as), we use probabilities of the sub-intervals

for weighting the predictions.

To avoid division by zero and logarithm of zero in evaluation

of (2) and (3) we use the Laplace correction [5]; instead of each

probability p, we use the factor
(pn+1)
(n+c)

, where c is the number

of class values and n is inversely proportional to the strength of

belief in uniform prior probability. For n we use the number of

training instances.

The generation of explanations does not affect the learning

phase; for a single instance and for a particular model we need

O(a) model evaluations (at least one prediction for each attribute).

In reality the time to generate explanations is negligible on today’s

computers.

C. An Example of Computing Explanations

To illustrate how the generation of explanations works we

define a simple Boolean problem with three important attributes

(A1, A2, and A3) and one irrelevant one (A4). The class value

1 is defined as C = A1 ∧ (A2 ≡ A3). The whole truth table is

listed in Table I.

TABLE I

THE DATA SET FOR THE PROBLEM C = A1 ∧ (A2 ≡ A3).

A1 A2 A3 A4 C
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

A decision tree model built from this data is presented in Fig.

1. In the leaves, below the classification, the numbers of instances

for each class are given. We have selected decision trees for our

example because the decision process is transparent with these

models and we can follow it from the root to the leaves.

The first instance we want an explanation for is x = (1, 0, 0, 1),

meaning A1 = 1, A2 = 0, A3 = 0, and A4 = 1. Suppose we want

explanation for class value c = 1 with weight of evidence (3), then

for each attribute Ai we have to compute

WEi(c = 1|x) = log2 odds(c = 1|x) − log2 odds(c = 1|x\Ai)

When we classify this instance with the model from Fig. 1, it

ends in the bottom left-hand leaf classified to class 1 with (0, 4)

as the distribution of the instances. If we estimate probabilities

A1=0

0
8, 0

yes

A2 = A3

no

1
0, 4

yes

0
4, 0

no

Fig. 1. A decision tree for the problem C = A1 ∧ (A2 ≡ A3). In the
leaves (square nodes) below the predicted class values the distributions of
class values are given.

with relative frequency, then p(c = 1|x) = 1. To get explanations

we have to compute also p(c = 1|x\Ai) for each attribute i using

(6). For A1 its values 0 and 1 have equal probabilities 0.5 and

we get p(c = 1|x\A1) =

= 0.5 · p(c = 1|(0, 0, 0, 1)) + 0.5 · p(c = 1|(1, 0, 0, 1))

= 0.5 · 0 + 0.5 · 1 = 0.5

For this we had to classify also the instance (0, 0, 0, 1) (A1

with value 0), which ended in the top left-hand side leaf with

distribution (8, 0), giving p(c = 1|(0, 0, 0, 1)) = 0. Using the

Laplace correction with n = 16 we finally get explanation for

A1:

WE1(c = 1|x) = log2 odds
1 · 16 + 1

16 + 2
− log2 odds

0.5 · 16 + 1

16 + 2

= log2

17
18
1
18

− log2

9
18
9
18

= 4.09 − 0 = 4.09

meaning that in the given model A1 positively influences the

class 1. If we compute the explanation for class 0, we get the

complementary result:

WE1(c = 0|x) = log2 odds
0 · 16 + 1

16 + 2
− log2 odds

0.5 · 16 + 1

16 + 2
= −4.09,

indicating that A1 negatively affects the class 0. For explanation

with information difference (2) we get 0.92 and -3.17 for classes

1 and 0, respectively (note the asymmetry). For difference of

probabilities (4) we get 0.5 and -0.5, respectively.

For explanation of A2 we have to compute

WE2(c = 1|x) = log2 odds(c = 1|x) − log2 odds(c = 1|x\A2)

To get p(c = 1|x\A2) we classify (1, 1, 0, 1), getting p(c =

1|(1, 1, 0, 1)) = 0 and p(c = 1|x\A2) =

= 0.5 · p(c = 1|(1, 0, 0, 1)) + 0.5 · p(c = 1|(1, 1, 0, 1))

= 0.5 · 1 + 0.5 · 0 = 0.5

We get WE2(c = 1|x) = 4.09, indicating positive (and equivalent

to A1) influence of A2 on class 1 in this model.

While A3 is identical to A2, for A4 which is left out from

the model, we get the same classification for its values 0 and
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1, giving p(c = 1|x) = p(c = 1|x\A4) = 1. Finally we get

WE4(c = 1|x) = 0, an indication of irrelevance.

For another instance we would get different explanation.

For example, if x=(0,1,1,0), the explanations for class 1 for

(A1, A2, A3, A4) are (−4.09, 0.0, 0.0, 0.0). The complete list of

explanations for decision tree from Fig. 1, the weight of evidence

and class 1, is provided in Table II.

It is interesting that for some instances with A1 = 0 and A2 �=
A3, e.g., (0, 0, 1, 0), the explanations for all the attributes are 0.

The reason for this is, that if we change the value of any attribute,

the classification will remain the same, either in the top left-hand

side, or the bottom right-hand side leaf. Note that this is due

to the following concept: “if A1 = 0 or A2 �= A3 then C =

0”. This is the main weaknesses of our approach. Namely, the

proposed methodology is not able to correctly evaluate the utility

of attributes’ values in instances where the change in more than

one attribute value at once is needed to affect the predicted value.

This problem can be overcome only by an extensive search of

pairs, triples, etc. of attribute values. The exhaustive search is of

course unfeasible and a heuristic search reduction is necessary

(see the further work in Section 6).

TABLE II

THE EXPLANATIONS FOR CLASS 1 FOR THE DECISION TREE FROM FIG. 1

USING THE WEIGHT OF EVIDENCE.

instance x explanations WEi(c = 1|x)
A1 A2 A3 A4 WE1 WE2 WE3 WE4

0 0 0 0 -4.09 0.00 0.00 0.00
0 0 0 1 -4.09 0.00 0.00 0.00
0 0 1 0 0.00 0.00 0.00 0.00
0 0 1 1 0.00 0.00 0.00 0.00
0 1 0 0 0.00 0.00 0.00 0.00
0 1 0 1 0.00 0.00 0.00 0.00
0 1 1 0 -4.09 0.00 0.00 0.00
0 1 1 1 -4.09 0.00 0.00 0.00
1 0 0 0 4.09 4.09 4.09 0.00
1 0 0 1 4.09 4.09 4.09 0.00
1 0 1 0 0.00 -4.09 -4.09 0.00
1 0 1 1 0.00 -4.09 -4.09 0.00
1 1 0 0 0.00 -4.09 -4.09 0.00
1 1 0 1 0.00 -4.09 -4.09 0.00
1 1 1 0 4.09 4.09 4.09 0.00
1 1 1 1 4.09 4.09 4.09 0.00

From our example we see some practical properties of the

explanations:

1) model dependency: explanations express decision process

taking place inside the model, so if the model is wrong for

a given problem, explanation will reflect that and will be

correct for the model, therefore wrong for the problem;

2) instance dependency: different instances are predicted dif-

ferently, so the explanations will also be different;

3) class dependency: explanations for different classes are

different, different attributes may have different influence

on different classes (for two class problems, the effect is

complementary);

4) capability to detect strong conditional dependencies: if

the model captures strong conditional dependency (e.g.,

equivalence relation in Fig. 1), the explanations will also

reflect that;

5) inability to detect and correctly evaluate the utility of

attributes’ values in instances where the change in more

than one attribute value at once is needed to affect the

predicted value. To overcome this problem one can perform

a search over the combinations of attribute values but this

is a matter of further work.

6) dependency on the type of the difference evaluation: we get

different scores for (2), (3), and (4). While the sign of the

explanations is equal for all three types, the size and the

ratio between them is not. There is no single best way, each

has some advantages and some disadvantages.

III. VISUALIZATION

To make our explanation method practical we have developed

a visualization method called explainVis, which we demonstrate

on the well-known Titanic data set. The learning task is to

predict the survival of a passenger in the disaster of the Titanic

ship. The three attributes report the traveling class (first, second,

third, crew), age (adult or child), and gender of the passenger.

Altogether there are 2201 instances, of which we randomly

selected 50% for learning. Fig. 2 shows explanations for NB and

SVM methods for one of the first class, adult, male passengers.

We show information differences (2) on the horizontal axis.

Weight of evidence and difference of probabilities produce similar

graphs and explanations, but on a different scale. The vertical axis

contains names of the attributes on the left-hand side and their

values for the chosen instance on the right-hand side. The class

probability p(y|x) returned by the method for the given instance x

is reported on the top. The length of the thicker bars correspond to

the influence of the given attribute values in the model expressed

as (2). Positive information difference is given on the right-hand

side and negative information difference is on the left-hand side.

Thinner bars above the explanation bars indicate the average value

of the information difference over all the training instances for

the corresponding attribute value. Their purpose is to show trends

of particular attributes’ values. By comparing the full- and half-

height bars the user gets an impression what is the ”usual effect”

of particular instance values.

For the given instance we observe that in the NB model “status

= first” speaks strongly in favor of survival and being male

strongly against it, while being adult has a tiny negative influence.

Exact probabilities are displayed next to each bar. Thinner average

bars mostly agree with that (being male is on average even more

dangerous than in this case). The SVM model is more pessimistic

about survival of the particular person, giving only 22% chances

of survival (NB: 50%). In classification of this case it uses only

sex and age attributes which both speak against survival. On

average the first class status has positive impact, adult a tiny

negative one, and male a strong negative one.

While in our simple example we present all the attributes, for

domains with many attributes we introduce a threshold parameter

and only attributes with sufficient impact are displayed. In some

application domains (for example in medicine) experts interpret

similar graphs as points in favor/against the decision. There it

is expected that a total sum of points will be 1 (or 100). Such

normalization is also an option in our visualization tool.

To get a more general view of the model we can use ex-

planations for the training data and visualize the averages in a

summary form, which shows importance of each feature and its

value. One has to be aware that there is no single best knowledge

representation and there are many different opinions of which

approach and visualization is better. We believe that averaging

the explanations over the training data and visualization with a

sort of evidence for/against is useful and informative. An example
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Data set: titanic;  model: naive Bayes
p(survived=yes|x) = 0.50;  true survived=yes
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Data set: titanic;  model: SVM
p(survived=yes|x) = 0.22;  true survived=yes

Fig. 2. Explanation of NB and SVM models for one of the first class, adult,
male passengers in Titanic data set. Explanations for particular instance are
depicted with dark bars. Average positive and negative explanations for given
attributes’ values are presented with light shaded half-height bars above them.

of such visualizations for titanic data set are presented in Fig. 3.

On top we see model explanation for NB and on bottom there is

explanation of ANN.

In each model explanation graph on the vertical axis all the

attributes and their values are listed (each attribute and its values

separated by dashed lines). An average negative and positive

information difference is presented with the horizontal bar. For

attributes (a darker shade bar) an average effect of all its values is

given. For both NB and ANN sex plays the most important role,

following by status and age. The attributes’ values give more

precise picture. Both models roughly agree that male, adult, and

third class have a negative effect on survival. Also they agree

that female, child and first class have a positive effect, but they

disagree for second class and crew. NB sees crew as a negative

indication of survival, while in neural network it has a slightly

positive effect. Second class is a positive indicator for NB, while

information difference
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Data set: titanic, survived=yes
model: naive Bayes
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Data set: titanic, survived=yes
model: neural network

Fig. 3. Model explanation of the NB (left-hand side) and ANN (right-hand
side) on the Titanic data set. Light bars are average explanation for attributes’
values and dark bars are averages (separately for positive and negative scores)
over all values of each attribute.

in ANN it plays double role: a slight positive or a much stronger

negative one.

IV. CLOSENESS TO THE MODEL

How can we evaluate explanations when there is no objective

measure defined for it? While our approach is practically useful

and ”makes sense” for the algorithms and data we have investi-

gated, in this Section we also show that the explanations are close

to the model: the better the model captures the properties of the

problem, the closer are the obtained explanations to the ”correct

explanations”.

Our evaluation scenario includes five different learning algo-

rithms: NB, decision trees (DT), nearest neighbor (kNN), SVM
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and ANN. We have included decision trees in this evaluation

because the learned structure of the tree already provides explana-

tion, and we want to compare our method with it. We constructed

several artificial problems. Each problem is tailored to the abilities

of one of the learning algorithms and rather difficult for the others.

The labels of the instances in these problems can be explained

by their attribute values in a clear and unambiguous way and

we can therefore talk about correct explanation for each instance.

We want to show that the explanations of the best model for

the given problem are closer to the correct explanations than

the explanations of other models. For this purpose we define the

distance between correct explanation and the explanation given

by the model. We use Euclidean distance over all the attributes

of the explanations of prediction differences (1):

dexp(x) = (7)(
a∑

i=1

(
1

2
(

trueExpli(x)∑a
i=1 |trueExpli(x)| −

predDiffi(x)∑a
i=1 |predDiffi(x)| )

)2
) 1

2

Here trueExpli(x) represents the ”true explanation” weight of the

contribution of the attribute Ai to the prediction of the instance

x. For an attribute Ai the trueExpli(x) and predDiffi(x) can be

either positive (if the attribute’s value supports the selected class)

or negative (if the attribute’s value supports some other class). We

want all the instances to be equally represented so the absolute

values of the model’s explanations are normalized to 1 for each

instance: we divide the trueExpli(x) and predDiffi(x) with the

sum of their respective absolute values, and multiply them by 1
2 .

Let dexp be an average of (7) over all the testing instances,

than this is an indicator of how close the model’s explanations

are to the true explanations.

Below we report results for the weight of evidence

(predDiffi(x) is replaced by the weight of evidence WEi(x) (3)

in the distance (7)). Information difference (2) and difference of

probabilities (4) produce similar results. All the explanations are

computed for the class 1 in each problem domain. The data sets

used are:

condInd The class value is a boolean variable with 50%

probability of 1. The four important conditionally

independent attributes have the same value as class

in 90, 80, 70 and 60% of the cases. There are also 4

attributes unrelated to the class (random) in this data

set. Because of conditionally independent attributes

the problem suits NB method. The correct explanation

(with sum normalized to 1) would assign 0.4, 0.3,

0.2, and 0.1 to important attributes and 0 to unrelated

ones.

xor We generated a data set with three important attributes

describing a parity problem of order 3. We added

noise to the class value by reverting it in 10% of

the cases. There are also 3 attributes unrelated to

the class in this data set. The problem can be best

captured by a decision tree, where each path from

the root to the leaf contains test on both important

attributes. The true explanation assigns 0.333 to each

of the important attributes and 0 to unrelated ones.

groups Two important attributes I1 and I2 and class are

visualized in Fig. 4 (values are scattered around group

centers, which define class values). We added also

two attributes unrelated to the class. Instances with

class values 0, 1, and 2 are represented with circles,

triangles and lines, respectively. The true explanation

assigns 0.5 to each important attribute and 0 to unre-

lated ones. The kNN algorithm is the most appropriate

for this problem.

0.0 0.2 0.4 0.6 0.8 1.0
I1

0.0

0.2

0.4

0.6

0.8

1.0

I2

Fig. 4. Visualization of two important attributes in the groups data set.
Circles, triangles, and lines represent class values 0, 1, and 2.

cross This problem with two important attributes I1 and I2
is visualized in Fig. 5. The class value 1 (triangles) is

assigned to instances where (I1 − 0.5)(I2 − 0.5) > 0.

We also added 4 attributes unrelated to the class. The

true explanation assigns 0.5 to each of the important

attributes and 0 to unrelated ones. The SVM with

polynomial kernel of order 2 is best suited for this

problem as it can linearly separate the instances.

0.0 0.2 0.4 0.6 0.8 1.0
I1

0.0

0.2

0.4

0.6

0.8

1.0

I2

Fig. 5. Visualization of two important attributes in cross data set. Class
values 0 and 1 are visualized as circles and triangles, respectively.
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chess Two important attributes I1 and I2 and class are

visualized in Fig. 6. We have a 4×4 chessboard, with

circles and triangles representing class value 0 and 1,

respectively. We added also two attributes unrelated

to the class. The true explanation assigns 0.5 to each

important attribute and 0 to unrelated ones. The ANN

algorithm is the most appropriate for this problem.

0.0 0.2 0.4 0.6 0.8 1.0
I1

0.0

0.2

0.4

0.6

0.8

1.0

I2

Fig. 6. Visualization of two important attributes in chess data set. Class
values 0 and 1 are visualized as circles and triangles, respectively.

For each data set we generated 1000 instances for training

and another 1000 for testing of explanations. Cross-validation

and other sampling techniques are not necessary in our case.

For computation of p(y|x\Ai) in explanations we used (6)3. For

numerical attributes we used discretization to calculate (6). We

used the prior knowledge of each toy problem and selected the

right number of intervals. We used discretization with equal width

of intervals (3 intervals for groups, 2 for cross, and 4 intervals

for attributes in chess data set).

Table III presents for each of the data sets and each method

its accuracy (acc), area under the ROC curve (AUC) and the

average distance to the true explanation (dexp). Other settings

of the parameters could give better accuracy and AUC score for

some of the models (especially for SVM and ANN), but it is not

our aim to compare the classifiers’ accuracies but rather to test

closeness of the explanations to the models.

Note that for each data set (in one column) the most suitable

algorithm achieves the highest accuracy and AUC score. It also

has the lowest average distance to the true explanation (in bold

type). This is a clear confirmation that our explanations are closely

following the models; if any of the above model captures the

underlying structure of the problem, the explanations reflect that.

It is also a confirmation of suitability for a wide variety of

different models.

3For NB using (6) is not necessary as p(y|x\Ai) can be obtained by
excluding Ai from the computation. However, as shown in the Appendix,
the two approaches are equivalent

TABLE III

PERFORMANCE AND AVERAGE DISTANCES TO THE TRUE EXPLANATION

FOR FIVE CLASSIFICATION METHODS ON FIVE DATA SETS.

method condInd xor group cross chess
acc 0.90 0.51 0.35 0.50 0.50

NB AUC 0.96 0.51 0.50 0.50 0.50

dexp 0.06 0.39 0.46 0.45 0.47
acc 0.89 0.90 0.33 0.52 0.52

DT AUC 0.95 0.90 0.50 0.56 0.50

dexp 0.17 0.01 0.35 0.33 0.35
acc 0.86 0.90 0.99 0.55 0.71

kNN AUC 0.93 0.90 0.83 0.59 0.78

dexp 0.16 0.10 0.08 0.40 0.33
acc 0.89 0.58 0.66 0.98 0.53

SVM AUC 0.95 0.52 0.76 0.99 0.52

dexp 0.12 0.39 0.22 0.04 0.42
acc 0.89 0.90 0.98 0.95 0.84

ANN AUC 0.92 0.90 0.82 0.98 0.90

dexp 0.27 0.09 0.09 0.08 0.16

A. Redundant attributes

Machine learning algorithms use different strategies when

dealing with redundant and highly correlated attributes. This issue

is mostly tackled through feature subset selection and feature

weighting [6], which keeps only useful features and also tries

to eliminate redundant features. If redundant features are not

eliminated before learning, they may have undesirable effects

on the learned models. A particular strategy for dealing with

redundant attributes used by a model is reflected in explanations.

Below we discuss this for extreme case when we have two or

more identical attributes.

The NB classification is strongly affected by identical at-

tributes, as their contributions are repeated (multiplied). The

explanation gives all copies of the same attribute equal utility. The

decision tree selects one copy of the attribute in one path from

root to the leaf and ignores the others. Here the explanation gives

a positive utility to the former attribute and zero to the others.

The kNN is sensitive to the distance, and as the attribute space

is deformed by additional copies of attributes, the classification

performance gradually deteriorates and this is also reflected in

the explanations. SVM and ANN are also sensitive to redundant

attributes, but to a lesser extent. How this affects explanations

is instance dependent, as certain parts of problem space may

be treated differently by the model. We illustrate this on groups
problem (see Fig. 4) with two most suitable models for it, namely,

kNN and ANN. We duplicated both important attributes, I1 and

I2. For a particular instance from class 1 (triangles) we show

explanations on Fig. 7.

Dark-shaded bars present explanations for the selected instance.

Light-shaded bars illustrate average positive and negative expla-

nations of instances from the same value interval. The kNN (on

top) assigns both copies of important attributes the same utility.

ANN (on bottom) also assigns the same utility to both copies

of I2, but uses almost no information from the second copy of

I1, which results in different instance explanation for I1 and I2.

Average explanations show a more general picture of this data set:

both copies of important attributes play important role in kNN and

ANN. Unimportant attributes R1 and R2 affect kNN model much

stronger than ANN.

The same thing is confirmed with visualization of model level

explanations on Fig. 8. As attributes are numerical in this data
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Data set: modGroup2;  model: neural network
p(class=1|x) = 1.00;  true class=1

Fig. 7. Explanation for one of the instances in the groups data set with
duplicated important attributes. The instance is labeled with class 1 (triangle).
On the top explanations are for kNN model and for ANN they are on the
bottom.

set, the explanations are averaged over intervals of values. High

scores are assigned to important attributes and their values, and

much lower to unimportant ones. We see that kNN is affected

by redundant attributes much more than ANN, as the explanation

scores for R1 and R2 are much larger. The reason for that is in

distortion of distances caused by multiple copies of attributes.

B. Notes on Use

Explanations for numerical attributes are somewhat sensitive

to discretization used for computation of p(y|x\Ai) in (6). For

example, when we used 3 intervals (instead of 2) in the cross
data set the average distance for SVM and ANN increased from

0.04 and 0.08 to 0.05 and 0.12, showing a slight decrease in the

quality of explanation. NB, DT, and kNN have approximately

the same (poor) performance with both discretizations. Indeed, if

discretization is allowed to blur the information of an attribute,
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Data set: modGroup2, class=1
model: neural network

Fig. 8. Model explanations for kNN (top) and ANN (bottom) on the groups
data set with duplicated important attributes. As attributes are numerical,
explanations are averaged and presented for intervals.

this is likely to reduce the quality of the explanation. If there

is no other prior knowledge available, our advice is to use

more fine grained discretization. With more intervals there is less

opportunity to cover up the attribute’s information. For example,

with 15 intervals in the cross data set the average distance of

SVM and ANN is again back at 0.04 and 0.08.

Note also that the computation of p(y|x\Ai) with (6) is not the

only way. For NB it is better to drop Ai from the computation

and for neural networks which usually encode discrete attributes

as several binary inputs we can just simulate an empty input.

Other models may have their particular solutions, simpler than

(6). One such solution for probabilistic radial basis function net-

works which exploits a marginalization property of the Gaussian

distribution is presented in [7].
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It may be the case that for some poorly calibrated classifier

the probabilities p(y|x) and p(y|x\Ai) computed in classification

are disproportionate to their true probability. Our explanation

method which relies on this differences could be disproportionate

in that case as well. We haven’t observed that in any of our

experiments, but this is a potential problem and can be prevented

by calibration of the classifiers. As reported in [8] boosting and

SVM are particularly prone to this defect, while neural networks

are already perfectly calibrated.

Our experience in classification shows that all three inter-

pretations: information difference (2), weight of evidence (3),

and difference of probabilities (4) perform quite similarly across

different problems, especially if we normalize the effects to 1

or 100 as explained in Section 3. A notable exception are the

problems where the attributes are conditionally independent (as in

condInd data set); for such problems the weight of evidence gives

explanations which are proportional to their true effect, while

information difference (which uses logarithms directly) gives

nonlinear explanations. For this reason we recommend weight

of evidence as a default choice.

All the learning algorithms used are from the R Project

(http://www.r-project.org/), packages e1071, nnet, kknn, RWeka,

and CORElearn. The sources code for the generation of proba-

bilities in classification, the data sets, as well as the visualization

module can be obtained from the authors.

V. RELATED WORK

Explanation of prediction is straightforward for symbolic mod-

els such as decision trees, decision rules and inductive logic

programming, where the model itself gives an overall transparent

knowledge in a symbolic form. Therefore, to obtain the expla-

nation of a prediction, one simply has to read the corresponding

rule in the model. Whether such explanation is comprehensive in

the case of large trees and rule sets is questionable.

For non-symbolic models there is no such possibility. Tech-

niques for extracting explicit (if-then) rules from black box

models (such as ANN) are described in [9]–[12]. In [13] a

black box model is approximated with a symbolic model, such

as decision tree, by sampling additional training instances from

the model. Extraction of fuzzy rules from trained ANN using

interval propagation is suggested in [14], while an approach which

can provably extract sound and also nonmonotonic rules was

presented in [15]. In [9] a search-based method has been proposed

suitable for ANN with binary units only, while application of

the method proposed in [11] requires discretization of the hidden

unit activations and pruning of the ANN architecture. Främling

[16] explains neural network behavior by using contextual im-

portance and utility of attributes which are defined as the range

of changes of attribute and class values. Importance and utility

can be efficiently computed only in a special INKA network.

Our approach is based on marginalization and can be efficiently

computed for any probabilistic classifier. For a more complete

review of knowledge extraction methods from ANN we refer

the reader to [17], where taxonomy and criteria for evaluation

of rule extraction methods from ANN are introduced, and [18],

which concentrates mostly on finite-state machines extracted from

recurrent ANN but covers also other approaches.

Some non-symbolic models enable the explanation of their

decisions in the form of weights associated with each attribute. A

weight can be interpreted as the proportion of the information

contributed by the corresponding attribute value to the final

prediction. Such explanations can be easily visualized. For logistic

regression a well known approach is to use nomograms, first

proposed in [19]. In [20] nomograms were developed for SVM,

but they work only for a restricted class of kernels and cannot be

used for general non-linear kernels.

SVM can also be visualized using projections into lower

dimensional subspaces [21], [22], or using self-organizing maps

from unsupervised learning [23]. These methods concentrate

on visualization of separating hyperplane and decision surface.

The visualization of individual instances to lower dimensional

projections and their position relative to decision surface can be

considered a sort of explanation.

The naive Bayesian classifier is able to explain its decisions

as the sum of information differences [24]. A straightforward

visualization of NB was used in [25] while in [26] nomograms

were developed for visualization of NB decisions. We generalize

the NB list of information differences to a list of attribute weights

for any prediction model. For classification we propose three

variants of weights and elaborate in more detail the weights based

on information differences and the weight of evidence.

In ExplainD framework [27] the weight of evidence and visu-

alizations similar to ours are used, but the explanation approach

is limited to (linear) additive models, while ours can be used

for all probabilistic models and is not restricted to the weight of

evidence.

In the tools accompanying his Random Forests algorithm [28],

Breiman has used bootstrap sampling and random permutation of

values to visualize the importance of features, outliers, and also

the importance of features for prediction of individual instances.

Due to specifics of the techniques used, the approach is limited

to Random Forests.

Madigan et al. [29] in their belief networks use each (binary

or multivalued discrete) attribute as a node in the graph. By

computing ”evidence flows” in the network it is possible to

explain its decisions.

A marginal effect of an attribute is defined as the partial

derivative of the event probability with respect to the attribute

of interest. A more direct measure is the change in predicted

probability for a unit change in the attribute. Marginal effects

are used for explanation of specific models where the marginal

distribution can be estimated e.g., in logistic regression [30]. They

are used also to determine causal relationships, for example, in

marginal structural models [31]. These models expect user’s input

of suspected dependencies (confounders) and do not deal with

explanations on the instance level.

VI. CONCLUSIONS

We present an approach to explanation of predictions, which

generates explanations of predictions for individual instances.

The presented approach is general and can be used with any

classification method that outputs class probabilities. The method

is based on the decomposition of model’s predictions (marginal

prediction). These decompositions can be interpreted as local

gradients and are used to identify the individual contribution

of each attribute. We have empirically shown that proposed

explanations closely follow the models for five different classifi-

cation methods. This is shown in an experiment confirming that

explanations of better models correctly reflect the learned concept.

With the presented explainVis visualization method we see effects
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of various features on instance prediction. The visualization of

average explanations gives information about attributes and their

values (intervals for numeric attributes) on the level of the model.

Both types of graphs enables comparison of different prediction

methods.

Currently we are using the presented techniques to generate

explanations in regression and also to go beyond the model

explanation to the domain explanation. In particular, we are

interested in the decomposition of predictions through sequential

generation of models. Another issue for further work is the

problem with explanation of instances where the change in more

than one attribute value at once is needed to affect the predicted

value, as mentioned in Section II-C. Namely, our methodology is

not able to correctly evaluate the utility of attribute values that

appear in such instances. This problem can be overcome only by

an extensive search of pairs, triples, etc. of attribute values. The

exhaustive search is of course unfeasible and a heuristic search

reduction is necessary. The search shall probably be combined

with the sequential generation of models, i.e. models that use

different subsets of attributes.

APPENDIX

We prove that for NB classifier Eq. (6) is sound, i.e., it is

equivalent to excluding attribute Ai from the computation.

NB calculates the probability of class y for a given instance

x = (A1 = ak1 , ..., Aa = aka
) with the following formula, where

it assumes the conditional independence of attributes given the

class:

p(y|x) = p(y)

a∏
j=1

p(Aj = akj
|y)

p(Aj = akj
)

(8)

When attribute Ai has unknown value, it is excluded from the

computation:

p(y|x\Ai) = p(y)
∏
j �=i

p(Aj = akj
|y)

p(Aj = akj
)

(9)

On the other hand, if we replace the value aki
of attribute Ai

with value as, we get:

p(y|x ← Ai = as) = p(y)
p(Ai = as|y)

p(Ai = as)

∏
j �=i

p(Aj = akj
|y)

p(Aj = akj
)

(10)

Therefore we have:

p(Ai = as)p(y|x ← Ai = as) =

= p(y)p(Ai = as|y)
∏
j �=i

p(Aj = akj
|y)

p(Aj = akj
)

= p(Ai = as|y)p(y|x\Ai)

and finally we get:

mi∑
s=1

p(Ai = as)p(y|x ← Ai = as) =

(11)

= p(y|x\Ai)

mi∑
s=1

p(Ai = as|y)

= p(y|x\Ai)
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[16] K. Främling, “Explaining results of neural networks by contextual
importance and utility,” in Proceedings of the AISB’96 conference, 1996.

[17] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and critique of
techniques for extracting rules from trained artificial neural networks,”
Knowledge-Based Systems, vol. 8, no. 6, pp. 373–384, 1995.

[18] H. Jacobsson, “Rule extraction from recurrent neural networks: A
taxonomy and review,” Neural Computation, vol. 17, no. 6, pp. 1223–
1263, 2005.

[19] J. Lubsen, J. Pool, and E. van der Does, “A practical device for
the application of a diagnostic or prognostic function,” Methods of
Information in Medicine, vol. 17, pp. 127–129, 1978.
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