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Abstract

Motivation: Providing students with individualized feedback through assignments is a cornerstone of education that supports their learning and
development. Studies have shown that timely, high-quality feedback plays a critical role in improving learning outcomes. However, providing
personalized feedback on a large scale in classes with large numbers of students is often impractical due to the significant time and effort re-
quired. Recent advances in natural language processing and large language models (LLMs) offer a promising solution by enabling the efficient
delivery of personalized feedback. These technologies can reduce the workload of course staff while improving student satisfaction and learning
outcomes. Their successful implementation, however, requires thorough evaluation and validation in real classrooms.

Results: \We present the results of a practical evaluation of LLM-based graders for written assignments in the 2024/25 iteration of the
Introduction to Bioinformatics course at the University of Ljubljana. Over the course of the semester, more than 100 students answered 36
text-based guestions, most of which were automatically graded using LLMs. In a blind study, students received feedback from both LLMs and
human teaching assistants (TAs) without knowing the source, and later rated the quality of the feedback. We conducted a systematic evaluation
of six commercial and open-source LLMs and compared their grading performance with human TAs. Our results show that with well-designed
prompts, LLMs can achieve grading accuracy and feedback quality comparable to human graders. Our results also suggest that open-source

LLMs perform as well as commercial LLMs, allowing schools to implement their own grading systems while maintaining privacy.

1 Introduction

The recent development and widespread availability of large
language models (LLMs) have led to their adoption across
numerous fields of human endeavor (Kaddour et al. 2023,
Minaee et al. 2024). Their ability to provide instant and per-
sonalized responses has naturally prompted researchers to ex-
plore their use in education, revealing applications that
benefit both students and instructors. These applications take
various forms, including personalized student tutoring (Lyu
et al. 2024), contextualizing exercises to enhance engagement
(Yadav et al. 2023), and automated grading of student sub-
missions (Chiang and Lee 2023, Liu et al. 2023).

In addition to reducing the workload on teaching faculty,
automated grading offers numerous benefits to students and
their educational outcomes. Studies have shown that students
prefer feedback that is both linguistically clear and provided
in a timely manner (Paterson et al. 2020). Encouraging and
constructive feedback has also been linked to improved aca-
demic performance. Furthermore, automated grading ensures
greater consistency in scoring and feedback, as LLMs are not
prone to human errors such as fatigue and variability in grad-
ing standards (Klein 2002, Madigan et al. 2023). This ap-
proach allows teaching assistants (TAs) to dedicate more
time to direct interactions with students, which students also
highly value (Paterson et al. 2020).

Automatic grading of student assignments dates back to as
early as 1968 (Page 1968). Since then, several systems for
grading short answers have been developed, typically relying
on a corpus of annotated responses (Mohler et al. 2011,

Riordan et al. 2017). However, the emergence of LLMs with
few-shot capabilities makes them particularly well suited for
automated grading, especially in cases where instructors can
anticipate correct answers and common mistakes. As a result,
adopting this technology has become more feasible than ever.

Several studies have explored the use of LLMs in the class-
room. Kostic et al. (2024) examined GPT-4’s ability to grade
essays and reported poor performance. They also investigated
grading variability among human instructors in a small work-
shop setting; however, their study was limited to only three
instructors grading four essays. Similarly, Dai et al. (2023)
used ChatGPT to generate feedback for student project pro-
posals and found that, while ChatGPT was consistently able
to generate more readable and clearer feedback than human
instructors, its assessment performance proved to be inade-
quate for a real-classroom setting. In contrast, Impey et al.
(2024) applied GPT-4 to grade submissions from three mas-
sive open online courses and found assessment performance
comparable to that of instructors and outperforming peer-
based grading. However, their study focuses primarily
on assessment performance and largely overlooks the impor-
tance of providing constructive feedback. While the afore-
mentioned  studies investigated LLM-based grading
retrospectively, Chiang et al. (2024) integrated GPT-4 into a
real-world course, “Introduction to Generative AL.” Students
had direct access to GPT-4 and the associated grading
prompts (i.e. prompts for grading) and were allowed to test
their responses up to 80 times per assignment. In their study,
students’ final grades were determined by the scores they
were able to achieve using the LLM.
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Figure 1. Schema of student submissions graded by LLMs, based on TA-
graded examples and grading rubric composed of criteria. System and
user prompts serve as standard role-based instructions for LLMs. The
dashed arrow denotes 25% of students’ submissions that were graded
by TAs for in-context examples.

In this study, we examine the use of LLM graders in a uni-
versity classroom setting applied to the Introduction to
Bioinformatics course, a hands-on bioinformatics course
whose innovative design and focus on practical problems we
previously reported at ISMB-24 (Policar et al. 2024). Unlike
Chiang et al. (2024), where students had access to LLM-
generated grading prompts, we used LLMs as direct replace-
ments for human graders, grading student submissions only
once after the assignment due date, without providing stu-
dents access to the grading prompts (see Fig. 1). This setup
closely reflects real-world grading scenarios and serves as a
valuable case study for implementing LLMs in other aca-
demic settings. Additionally, the study was conducted in a
randomized manner, where students were unaware of
whether their submissions were graded by a human or an
LLM. Students subsequently evaluated the quality of the
feedback they received, enabling a quantitative comparison
between human and machine grading. While most existing
studies focus on a single LLM, typically GPT-4, we systemati-
cally compare the performance of six different LLMs as auto-
mated graders and benchmark them against human TAs.

The study design was reviewed and approved by our insti-
tutional internal review board—the Research Ethics and
Data Handling Review Board of the University of Ljubljana
(approval number 20241130001)—to ensure compliance
with ethical research standards.

2 Study design

We conducted our study in the introductory course to bioin-
formatics offered by the Faculty of Computer and
Information Science, University of Ljubljana, during the
2024-25 winter semester. The course is taught in English.
This year’s cohort included 119 students, primarily master’s
level computer science students, but also included several stu-
dents from the Faculty of Mathematics and Physics and the
Biotechnical Faculty. The course comprises lectures, five
take-home assignments, and a final exam. Each of the five
take-home assignments tackles a different aspect of bioinfor-
matics, following the SARS-CoV-2 case study detailed in our
previous work (Policar et al. 2024). Each assignment consists
of multiple exercises in which students implement bioinfor-
matics algorithms, apply them to real-world data, visualize
their findings, and discuss their results in written answers to
specific questions. Each assignment contains several manda-
tory exercises designed to guide students through an investi-
gation of the SARS-CoV-2 virus. Students can earn extra
points by completing bonus exercises that complement the
main storyline. After each assignment deadline, the TAs
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assess each student’s submission and provide a numeric score
for the overall assignment, as well as written feedback clarify-
ing mistakes and offering potential improvements. In our
standard execution of the course, programming exercises are
graded using automatic unit tests that verify the correctness
of the algorithm implementations, while figure submissions
and text answers are graded manually by the TA.

In the present study, we investigate whether LLMs could
be used in place of human TAs for the assessment of written
text answers. Participating students had their text-based
answers reviewed and graded by an LLM. Unless the student
requested a human review of the grade, the LLM-assigned
grades were used in their final grades. Consent was obtained
for each of the five assignments. Participation was purely vol-
untary, and a student’s decision on whether or not to partici-
pate had no bearing on the student’s final grades. Students
withholding their consent had their assignments graded in
our standard manner, using automated unit tests and human
review. Study participation rates were high. On average, we
received 105 submissions for each of the five assignments,
where between 99 and 101 (~94%) students gave consent to
be included in the study. Overall, 93 students gave consent
for all five assignments.

The study was performed as follows. Each of the five
assignments includes between 2 and 7 mandatory essay-style
questions and between 1 and 3 optional bonus essay-style
questions. Each textual response was randomly assigned to
one of the eight groups—two TA-based and six LLM-
based—where either a TA or LLM assigned a score and pro-
vided written feedback according to the same predefined
grading rubrics. This feedback was interspersed with unit
test-generated feedback from programming exercises and
TA-written feedback for figure submissions. Consequently,
students receive grades and feedback from multiple graders
on textual questions in a single assignment. The students
were not informed which grader evaluated each of their text-
based answers and did not have access to the prompts at any
point. Upon receiving their assignment grade and feedback,
we ask students to fill out a survey rating their satisfaction
with the feedback on each of the text-based questions in their
assignment. Due to the potential for LLM errors, participat-
ing students may request a human review of any of
the answers. If no reevaluations are requested, the LLM-
assigned grades are used as their final grades. We note that
the TAs were informed that their grades and feedback would
be compared to that of LLMs as part of this study. While this
awareness may have led them to be more careful in their
assessments, this additional scrutiny likely improved the
quality and reliability of the reference grading.

The study aimed to compare popular commercial and non-
commercial LLMs. To assess the capabilities of LLMs for
grading student-written text submissions, we include three
different LLM model architectures, including the popular
ChatGPT model (GPT-40) from OpenAl (OpenAl 2024),
four different versions of the open-source Llama 3 models
from Facebook (Al@Meta 2024), and a recent model from
NVIDIA (Llama-3.1-Nemotron-70B, referred to as Nvidia-
70B) (Wang et al. 2025). Facebook released three open-
source versions of the Llama 3 architecture with varying
numbers of parameters: 7B, 70B, and 405B. While the larger
of these models require specialized hardware, which is often
not available to university departments, the smaller models
can be run on high-end consumer-grade GPUs, which can
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more readily be found in university departments.
Additionally, the hardware requirements can often be
reduced through quantization, often at minimal loss in per-
formance (Jin et al. 2024). In our study, we include full-
precision versions of Llama-8B and Llama-70B, as well as
quantized versions of Llama-70B and Llama-405B, which we
denote as Llama-70Bq4 and Llama-405Bq4, respectively.
The full-precision version of Llama-405 was not included
due to hardware limitations, while a quantized version of
Llama-8B was not included based on poor performance in
preliminary preparations for this study. To preserve sufficient
statistical power in comparisons among LLMs, we did not
consider other available models. In total, we include six
LLMs: GPT-40, Nvidia-70B, Llama-405Bq4, Llama-70B,
Llama-70Bg4, and Llama-8B.

A key requirement for an effective LLM grader is the abil-
ity to provide high-quality feedback. As described earlier, we
assess feedback quality through student surveys completed
after receiving their graded assignments. However, there are
multiple aspects that humans take into account when evaluat-
ing written feedback, of which we identify tone and content
as the two most important aspects. To disentangle the impact
of tone from content in student preferences, we include an
additional grading group: “TA-GPT-revised.” In this group,
human TAs assign scores and provide written feedback,
which is then rewritten by GPT-40-mini. The model is
instructed to preserve the original content while adjusting
only the tone to match ChatGPT’s typical style. By compar-
ing student satisfaction between these two groups, we are
able to discern whether student preferences are driven by dif-
ferences in tone, content, or both.

3 Prompts

Each student’s answer is evaluated using a single prompt for
an LLM comprised of a fixed system prompt and an exercise-
specific user prompt. The system prompt includes general
grading instructions and guidelines, while the user prompt
includes exercise-specific information, including the question,
a sample correct answer, the student submission, the grading
rubric, and several TA-graded examples. The overall prompt
structure is shown in Fig. 2. The user prompts consist of two
key components: the grading rubric, which specifies the grad-
ing criteria and corresponding point allotments, and manu-
ally graded grading examples of student submissions for the
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specific exercise. We describe each of these in more de-
tail below.

Each grading rubric consists of one or more grading crite-
ria, each specifying a required aspect or theme that must be
present in the submission to earn points. Each criterion is al-
lotted a certain number of points, and the total score is com-
puted by summing the points from all satisfied criteria.
Criteria can also include an optional explanation section that
can be used solely for feedback. This allows LLMs to draw
on additional information when generating written feedback,
which may be helpful in certain explanations, such as a par-
ticularly illustrative or interesting example from biology that
students are not expected to know or a simple counterexam-
ple demonstrating why a particular answer was incorrect. In
some instances, satisfying all criteria would result in a score
exceeding 100%. In these cases, we include a formula that
specifies the exact computation of the final score (highlighted
in red in Fig. 2).

The blue panel in Fig. 2 shows one particular grading ru-
bric comprised of three grading criteria. Each criterion is ac-
companied by an explanation. In this example, criteria A and
B denote both parts of the correct answer (0.5 points each),
but partial points can also be achieved via criteria C (0.25
points). Since a comprehensive student answer could satisfy
all three criteria, simply adding the points together would
yield a score of 1.25 points. Therefore, we include an expres-
sion in the preamble of the rubric table specifying how the fi-
nal score should be obtained (see Fig. 2, red). In the present
study, we consider only additive criteria, as this simplifies
grading rubric design and enables more transparent grading
and feedback. However, we have no reason to believe sub-
tractive criteria would perform differently.

The grading examples section contains up to 10 examples
of manually graded submissions per exercise. To ensure a di-
verse set of graded examples, the manually graded submis-
sions from the TA and TA-GPT-corrected grading groups are
first grouped based on unique combinations of satisfied grad-
ing criteria (e.g. satisfies A but not B). Then, both groups and
submissions are sampled randomly to be included in the
prompt. The green panel in Fig. 2 shows two examples of
graded examples.

As shown in Fig. 2, LLMs are prompted to return a struc-
tured response containing the score and written feedback for
each submission, as well as a list of satisfied rubric criteria.
During informal preliminary testing of different prompts, we

System prompt
You are a helpful assistant who helps provide
wholesome feedback to student submissions.

> /Grading Rubric \

>

GA—graded examples \ ‘We grade the answer by checking if the submission

Your main goal is giving feedback and grading .

satisfies the following criteria:

bmission: “Some E. coli ORFs start with GTG.

submissions based on predefined criteria.
I Question

Why are we missing true ORFs in the E.
coli genome when searching only for the
ones starting with ATG and ending in
stop codons with length div. by 32

<Anti-cheating instructions>

<Grading guidelines>

User prompt

<Question>

Output format

{
“grading”: <criteria satisfaction>,
“score”™  <sum of criteria>,
“feedback”: <feedback text>

<Correct Answer>

<Student Submission>

<Grading Rubric>

<Grading Examples> }

Please help me grade this submission.

Ribosomes can sometimes skip nucleotides, thus
changing the reading frame.”
TA grade: {
“grading”: The submission satisfies A, B.,
“score”: 1.0,
“feedback”: Correct. About 10% of E. coli
ORFs start with GTG not ATG. The process
of skipping nucleotides is called a frameshift.

Submission: “Due to mutations in STOP codons.”

TA grade: {
“grading”: The submission does not satisfy A, B.
The submission satisfies C.,
“score”™: 0.25,
“feedback”: Although sequence mutations could

Points are calculated as: min (A+B+C, 1.0)

A (0.5 pts)

The submission states that some E. coli ORFs start
with the GTG codon instead of ATG.
EXPLANATION: 10% of E. coli ORFs start with
GTG since tRNA recognizes it as ATG start codon.

B (0.5 pts)

The submission states that frameshifts during
translation produce ORFs with length, not div. by 3.
EXPLANATION: Due to mRNA secondary
structure, ribosomes can be shifted back or forward a
few nucleotides, thus changing the reading frame.

C(0.25 pts)

‘The submission mentions sequence mutations.

explain missing ORFs, they are very uncommon.

\_ /

EXPLANATION: Mutations creating viable ORFs

Qe a possible explanation but are very uncommon. /

Figure 2. Prompt structure with a grading rubric and TA-graded examples. The system prompt is fixed across exercises, while the user prompt

dynamically includes the associated question, examples of correct answers, grading rubrics, and graded examples. The model response is structured as

a JSON with predefined fields.
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found that requiring LLMs to explicitly list the satisfied ru-
bric criteria improves assessment accuracy. While we could
programmatically parse the list of satisfied criteria and com-
pute the total score of each submission, we have found that
LLMs reliably handle this task and that mistakes are ex-
tremely rare. Apart from a single instance (0.3%) of under-
counting by LLama-8B out of its 333 submissions, no other
model made errors in tallying points.

3.1 Preparing grading rubrics

Next, we describe our approach to preparing structured grad-
ing rubrics compatible with LLMs. Based on initial discus-
sions among the TAs and course instructors, we first prepare
preliminary grading rubrics for each of the 36 questions,
specifying correct and partially correct answers. Each grading
rubric comprises between 1 and 4 grading criteria, resulting
in a total of 61 grading criteria across all questions. We then
manually correct a sample of student submissions and make
adjustments to the rubrics as needed. As part of this study,
25% of the text-based submissions are assigned to the TA or
TA-GPT-revised grading groups. We use these submissions to
assess and refine the grading rubrics. To verify that the grad-
ing rubric is compatible with LLMs, we evaluate these sub-
missions using GPT-40 and manually inspect any mismatches
between TA-assigned and LLM-assigned scores. In case of
systematic differences in the LLM-assigned scores due to,
e.g., a poorly worded prompt, we revise the grading rubric as
needed. We then use the revised grading rubrics to evaluate
these same submissions again and inspect whether the identi-
fied errors were resolved.

In practice, major changes to the grading rubric were rare,
and anecdotally, most revisions involved rewording and clari-
fying ambiguous criteria. Although the procedure outlined
above applies preferential treatment to the GPT-40 model,
our intent here is not to tailor prompts to any particular
model but rather to identify systematic problems with our
prompts. To minimize the risk of overfitting to any one par-
ticular model, we limit ourselves to a single round of prompt
refinement. We have found that this is often enough to iden-
tify and correct the most systematic errors. As we will later
see in the Section 4, despite this advantage, GPT-40 performs
comparably to other similarly sized open-source models, indi-
cating minimal overfitting.

4 Results

Here, we consider two aspects of grading, both of which in-
form students about their performance: the numeric score
assigned to each exercise and the accompanying written feed-
back. We aim to answer the following two questions: (i) do
LLMs provide accurate grades? and (ii) is the feedback they
generate useful? In order for LLMs to serve as viable replace-
ments for human TAs, they must perform well on both tasks.

4.1 LLM grading accuracy

Student submissions assigned to the TA and TA-GPT-revised
served as the ground truth for evaluating LLM performance.
This subset accounts for 25% of total submissions, compris-
ing 670 manually graded submissions across 36 text-based
exercises. Each submission was assigned a score between 0
and 1, following the grading rubrics outlined in Section 3.
These grades were then used as the gold standard against
which we compare the performance of different LLMs. To
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decompose the performance of LLMs across different exer-
cise difficulty levels, the TAs manually categorized each of
the 36 exercises into five difficulty categories: “trivial”
(=S5, Heore = 0.96, 95% CI [0.92, 0.99]), “casy” (n=14,

Hecore =0.92, 95% CI [0.89, 0.95]), “medium” (n=11,
Heeore =0.81, 95% CI [0.75, 0.86]), “hard” (n=4,
Uscore = 0.40, 95% CI [0.31, 0.49]), and “open-ended”

(=2, peore =0.90, 95% CI [0.83, 0.96]). The reported
mean Scores fiy.... suggest that the ranking they devised was
consistent with student performance within each exercise dif-
ficulty category.

At first glance, a direct evaluation of LLM graders would
compare the number of points assigned by LLMs to those
assigned by human TAs. However, in our particular submis-
sion scoring setup—where points are awarded based on cor-
rectly identifying satisfied grading criteria—directly
comparing the number of points would not provide an accu-
rate assessment of LLM performance. For exercises with a
single grading criterion, a perfect score depends on correctly
judging a single criterion. For exercises with multiple criteria,
however, LLMs must make several correct judgments in or-
der to award a perfect score, increasing the chance of errors.
Thus, directly comparing numeric scores biases evaluation
performance in favor of exercises with a single grading crite-
rion. Consequently, framing this task as a binary classifica-
tion problem, in which LLMs judge whether a particular
criterion was satisfied or not, provides a more reliable mea-
sure of model performance. While many different metrics are
available for assessing binary classification performance, we
here report the classification accuracy (CA), which measures
the proportion of correct judgments made and allows us to
easily identify LLM grading biases in terms of leniency
(awarding more points than TAs) and strictness (awarding
less points than TAs).

The top panel of Fig. 3a shows the overall CA of each of
the LLMs. Overall, LLMs achieve strong performance, with
average CA scores ranging between 85% and 90%. One no-
table exception is Llama-8B, which achieves a relatively poor
CA of 75%. When grouping exercises by difficulty, we notice
a decrease in CA as the difficulty of the exercises increases.
This is likely because harder-to-answer questions often re-
ceive wildly varying answers that are impossible to foresee
and define their scoring within the prompts. Hard questions,
in particular, often require longer answers that sometimes
contain mathematical equations, which may be difficult for
models to categorize appropriately. One particularly interest-
ing category of questions is open-ended questions, where
there is no one particular correct answer. These kinds of
questions pose an interesting challenge. For open-ended ques-
tions, it is often impractical to exhaustively list all possible
correct, and the final judgment must often be made by the
LLM. Despite this, LLMs generally achieve solid perfor-
mance, achieving accuracies between 80% and 90%. One
interesting observation here is that in the “hard” and “open-
ended” categories, model performance appears to closely
match the number of model parameters. Both GPT-40 and
Llama-405Bg4 achieve similar performance, while the 70B
models all achieve slightly lower performance. Llama-8B per-
forms substantially worse still.

While the CA reports on the proportion of correct judg-
ments, it does not reveal whether models tend to be more le-
nient or stringent in grading than TAs. In Fig. 3b, we plot the
average differences in the matched grading criteria. Positive
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Figure 3. LLM performance on predicting grading criteria. TA grades represent the gold standard. 95% confidence intervals (Cl) of summary statistics are
obtained using bootstrap samples. (a) Classification accuracy of LLMs predicting each satisfied criteria as a binary classification. (b) The average grading
difference in prediction indicates more lenient (positive) or stringent (negative) grading by the LLM compared to TAs. (c) The standard deviation of the

grading difference indicates consistency among models.

values indicate that LLMs were more lenient, classifying
more criteria as satisfied than TAs. Negative values indicate
that models failed to report many of the criteria that TAs
marked as satisfied, resulting in lower final grades. For trivial
and easy questions, models exhibit little systematic bias with
means differences close to zero. For medium-difficulty ques-
tions, the models show low levels of negative bias, while the
opposite is true for difficult questions, where most models
are significantly more lenient than TAs. In open-ended ques-
tions, the majority of models exhibited no systematic bias.
Finally, we show the variance of differences in Fig. 3¢, which
shows minimal differences between models.

The obvious exception to the above is Llama-8B, which
exhibits poor performance across the board and is overly le-
nient in its grading. For instance, on hard questions, Llama-
8B correctly graded only about 50% of submissions and
assigned too many points in about 45% of submissions and
too few points in about 5% of submissions. The poor perfor-
mance of Llama-8B indicates its unsuitability for its use as an
assignment grader in the classroom. Its poor performance
could be due to several factors. Firstly, our prompts are quite
long, and perhaps Llama-8B struggles with the context size.
Interestingly, however, this does not appear to be the case
with easier questions, making this explanation unlikely.
Secondly, we designed our prompts to be generic and not tai-
lored to any one specific model in particular. It is plausible
that the current format is not compatible with Llama-8B and
that we might achieve better performance if prompts were
specifically tailored to Llama-8B. However, given that the
remaining models did not appear to require such adaptations,
we anticipate that the most likely explanation is due to a final
explanation—the inherent limitations of smaller models. This
is supported by the fact that Llama-8B appears to have the
most difficulties with harder questions, which typically re-
quire longer, more involved answers that include, for in-
stance, several steps of reasoning or short mathematical
proofs for which Llama-8B perhaps lacks the reasoning capa-
bilities to fully understand. On the other hand, 4-bit quan-
tized Llama-70Bg4 with similar hardware requirements
performed much better and achieved near nonquantized
performance.

From the analysis above, we make the following
observations:

1) With the exception of Llama-8B, all models achieve ade-
quate performance, demonstrating high accuracy when
determining whether a particular submission satisfies
predefined grading criteria and exhibits low levels of sys-
tematic bias.

2) Model performance generally correlates with their num-
ber of parameters. The larger GPT-40 and Llama-
405Bq4 models perform favorably to the 70B parameter
models, which in turn outperform the 8B parameter
Llama variant.

3) Quantization appears to have a negligible effect on per-
formance, as the quantized variant of the Llama-70B
model achieves comparable performance to its full-
precision counterpart.

4) Although none of the models achieve perfect accuracy,
we have determined their margin of error to be accept-
able. Given the general direction of the grading biases,
we anticipate little student pushback. Furthermore, stu-
dents who suspect grading errors can request a man-
ual review.

4.2 Impact of including grading rubric and
grading examples

In the previous section, we examined the performance of dif-
ferent LLMs using prompts that included both grading
rubrics and grading examples. Here, we investigate the effects
of excluding each of these elements from the prompt. While
these variants were not used in the actual submission assess-
ment, our results highlight the importance and effects of each
component. In Fig. 4, we report the mean differences in the
matched grading criteria for the three different
prompt variants.

The top rows of Fig. 4 show the performance of the six
LLMs across the three prompt variants. Prompts that in-
cluded only grading rubrics led to stricter grading, with
LLMs less likely to match grading criteria (Fig. 4a). On the
other hand, prompts that included only grading examples
resulted in more lenient grading, as LLMs were overly gener-
ous (Fig. 4b). Including both the grading rubric and grading
examples produced the best results, achieving a middle
ground between the two individual results. Curiously, these
biases did not greatly affect their CA, which was
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Figure 4. The importance of including grading rubrics and graded examples on LLM performance. The scale relates to systematic bias with respect to TA
grades. 95% confidence intervals (Cl) of summary statistics are obtained using bootstrap samples. (a) LLM performance using only the TA-defined
grading rubric in the user prompt. (b) LLM performance using only TA-graded examples without the grading rubric. (c) LLM performance using both a
grading rubric and graded examples in the user prompt. Since we include both grading rubrics and grading examples in our final grading prompts, this

panel is the same as Fig. 3b.

predominantly not statistically significant; all three variants
achieved similar CA scores (not shown for brevity).

We might expect that given enough examples, LLMs could
infer the grading rubric internally, potentially eliminating the
need for course instructors and TAs to prepare detailed grad-
ing rubrics. The results from Fig. 4b indicate that, for simpler
questions, LLMs achieve satisfactory performance using
grading examples alone. However, for harder and open-
ended questions, we observe a marked drop in performance.
We hypothesize that this may be due to the increased vari-
ability in student responses. Simpler questions tend to have
more straightforward answers with limited variation. Since
we include several manually graded student submissions in
the grading prompt, most student responses will likely be
similar to the grading examples, giving LLMs a blueprint for
the desired response. In contrast, answers to more difficult
and open-ended questions are often longer and more varied,
making it less likely that the grading examples will cover the
wide range of possible answers. For these more difficult ques-
tions, providing a grading rubric is essential (see Fig. 4c).

4.3 Student preferences for LLM-based feedback

Feedback is a fundamental aspect of the learning process, and
effective feedback has been shown to improve learning out-
comes (Paterson et al. 2020). Upon receiving grades and feed-
back for each of the five assignments, we asked students to
rate the feedback received for each text-based answer after re-
ceiving feedback for each assignment. We received student
satisfaction scores for a total of 1527 answers, of which 1189
were correct, and 338 were incorrect or partially correct.

To determine whether students prefer human-written or
LLM-generated written feedback, we model the student satis-
faction score using a Bayesian mixed-effects ordered probit
regression (Kruschke 2015):

Wi = Vi, TN, W, +a - score; + 7 - total;, 1)
y; ~ OrderedProbit(y;, cutpoints),

where y; denotes the student satisfaction score for a particu-
lar text-answer i. Here, y,, corresponds to the grading group
factor (one for each of the eight groups), 5, represents the
factor assigned to each exercise, accounting for different

difficulty levels of the exercises, and y, accounts for individ-
ual student biases. Since higher exercise and assignment
scores typically lead to higher satisfaction ratings, we model
these effects explicitly using the coefficients a (scores of indi-
vidual exercises) and 7 (score of the entire assignment). We
assign uninformative priors N'(0,2) on all parameters and
perform inference using the Stan library using Hamiltonian
Monte Carlo sampling (HMC) (Stan Development
Team 2025).

With the exception of feedback generated by Llama-
405Bq4, whose feedback students slightly preferred, Fig. 5a
and b suggest no significant preference for any particular
grader. However, when examining feedback preferences sep-
arately for correctly and incorrectly answered questions, a
more nuanced pattern emerges. To explore this, we extend
the model from Equation (1) and introduce two sets of grad-
ing group factors: one for correctly and one for incorrectly
answered questions. We tie each pair of grader factors into a
hierarchical model via a Gaussian hyperprior. Figure S5a
shows that students generally did not rate LLM feedback
lower than TA feedback. The only notable exception is
Nvidia-70B, whose feedback to incorrectly answered ques-
tions led to a roughly 15% higher likelihood of negative rat-
ings compared to TAs. This suggests that, with the exception
of Nvidia-70B, LLM-generated feedback is generally on par
with that of human TAs. Figure 5b shows how much more
likely students would be to rate feedback higher if it were
written by an LLM. Interestingly, although the changes in
probabilities are relatively modest, students appear to prefer
LLM-written feedback over feedback written by human TAs,
particularly for correctly answered questions. For incorrect
answers, satisfaction with LLM and TA feedback was com-
parable. One possible explanation for this discrepancy is the
difference in feedback styles. When a student’s answer is cor-
rect, human TAs often provide minimal feedback, such as
“ok” or “That’s right.” When the answer is incorrect or par-
tially correct, TA feedback tends to focus on the missing or
incorrect aspects of the answer and explaining the correct so-
lution, thus producing longer feedback. Conversely, LLMs
tend to provide much longer feedback both for correctly and
incorrectly answered questions (see Fig. 5c).
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Figure 5. Student preferences for individual graders. Due to the correlation between group factors during HMC sampling, we use the TA group as the
reference and report differences in satisfaction relative to TA-written feedback. Since grading group factors are difficult to interpret directly, panels (a) and
(b) show the average change in the probability that students would assign a lower (a) or higher (b) satisfaction rating when feedback is generated by each
grader compared to TA. Panel (c) shows the average differences in word counts in the generated feedback compared to TA-written feedback. 95%
credible intervals (Cl) in (a) and (b) are obtained using the highest density interval, while the confidence intervals in (c) are obtained using

bootstrap samples.

4.4 Student attitudes toward LLM-based grading

At the end of the semester, we presented the preliminary find-
ings of this study to the students in the classroom. Following
the session, students were asked to complete a short, anony-
mous survey regarding their attitudes toward the use of LLMs
as assignment graders and whether their attitudes had changed
over the course of the semester. A total of 42 students
responded to the survey. Selected results are shown in Fig. 6.

We first asked students whether they felt it was appropriate
for us to grade their assignments using LLMs before the be-
ginning of the course. Student responses were mixed, with an
average score of 3.2. Encouragingly, after completing the
course, students were much more open to LLM graders, with
the average score increasing to over 4.0.

We also asked students whether they had used any LLM-
enabled tools while working on the assignments. Over 92%
of students reported using such tools, with 90% using
ChatGPT for solving programming tasks and answering
essay-style questions and 46 % using Copilot for code genera-
tion in programming tasks. Inevitably, in some cases, this
devolves into LLMs grading the output of other LLMs. While
attempts have been made to detect LLM-generated content,
educators will increasingly have to find ways to deal with
LLM-generated content submitted as their own by students.
One student also reported using ChatGPT to better under-
stand the assignment instructions. Most students expressed
that it is fair for them to use LLMs when solving the assign-
ments if graded by LLMS (u =4.2), but feel more hesitant
about it when graded by human TAs (u=3.8) (Fig. 6).
Although students knew their answers might be graded by an
LLM, they largely reported on keeping their answering style.

In the present study, students could request a manual re-
view of their grades at any time. Consistent with prior re-
search (Chiang er al. 2024), students strongly felt it would be
unacceptable not to have the option to request a manual re-
view. In practice, requests for manual reviews were rare;
among the 498 total submissions, we received only three such
requests (0.6%).

5 Recommendations and guidelines

Based on our semester-long experience and the results of our
analysis, we offer the following recommendations and

What was your attitude to LLM graders I:I_—I_|:I
H before the course? T
! What was your attitude after the course? [ m— |
= t

Did you adjust

accep
H to use LLMs for coursework?
i Is it still acceptable if TAs were grading !
H your submissions by hand? E:I:_
- Could we run the stij‘(iy without _:lj]

manual review?

100% 50% 0% 50% 100%

i Do you

Figure 6. Results of the final survey. Questions are asked on a 5-point
Likert scale. Red bar colors correspond to negative attitudes and
disagreement, while green bar colors indicate positive attitudes

and agreement.

guidelines for incorporating LLMs into assignment grad-
ing workflows:

1) Use structured grading rubrics: Develop structured grad-
ing rubrics and include specific sections for explana-
tions. This enables LLMs to provide clearer feedback,
particularly for more difficult questions.

2) Include graded examples: Include graded examples of
the student submissions. These examples help LLMs bet-
ter understand TA grading style and expectations.

3) Test new grading rubrics: When preparing grading
rubrics, conduct a dry run on a sample of manually
graded student submissions to identify potential system-
atic grading errors. Pay close attention to the wording of
criteria, as LLMs may sometimes be unpredictably pe-
dantic, and small changes in wording can significantly
impact grading accuracy. Any refinements should fur-
ther be validated, ideally on a new sample of student
submissions, to avoid overfitting.

4) Open-source LLMs: If selecting an open-source LLM,
we recommend selecting the largest LLM your hardware
can support. Quantization appears to have negligible
effects on an LLM’s grading capabilities compared to
their full-precision counterparts, so prioritize larger
quantized models over smaller full-precision models. In
terms of grading performance, open-source LLMs per-
form as well as their commercial counterparts.

5) Allow requesting manual review: Provide students with
the option to request a manual review of their grades, as
LLMs still make occasional errors.
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6 Conclusion

We presented a study on the use of LLMs for grading written
assignments in the Introduction to Bioinformatics course dur-
ing the 2024-25 academic year. By implementing and evalu-
ating LLM graders in a real-world classroom setting, we
found that automated grading can achieve performance com-
parable to that of human TAs in both scoring and feedback
generation. Our findings show that well-designed grading
rubrics and examples graded by TAs help make automated
grading work well in courses with many students.

Our results show that open-source models perform on par
with commercial alternatives both in terms of grading accu-
racy and feedback satisfaction. For example, Llama-405Bq4
achieved comparable results to GPT-40 across all evaluated
criteria. This suggests that, with sufficient hardware resour-
ces, universities could deploy their own instances of LLM
graders without compromising performance. Such an ap-
proach could also alleviate the substantial financial costs as-
sociated with commercial solutions, as highlighted by Chiang
et al. (2024). While the comparable performance of open-
source models is promising, their high hardware demands
may pose challenges for many university departments. Recent
research has focused on developing smaller models that can
achieve similar performance to larger ones (Team et al.
2024), and we envision that, in the future, grading could be
performed locally on consumer-grade laptops, making it ac-
cessible to everyone. However, this capability is not yet a re-
ality. An alternative approach could involve fine-tuning
existing models to enhance performance, as studies have
shown that even small amounts of domain-specific data can
lead to significant improvements (Katuka et al. 2024).

Our study has several limitations. First, due to their proba-
bilistic nature, LLMs can generate different grading responses
even when prompted identically multiple times. Although
adjusting the temperature parameter can reduce variability,
some randomness typically persists (Jauhiainen and Guerra
2024). While local models produced deterministic results,
GPT-40 showed minor variability in feedback when
prompted identically multiple times, but its assigned grade
remained consistent. Second, previous studies have reported
instances of students engaging in prompt-hacking, where sub-
missions contain deceptive instructions, such as directing the
LLM to assign the maximum possible score (Chiang and Lee
2023). To mitigate this, we incorporated anticheating meas-
ures into our system prompts; however, we did not observe
any prompt-hacking attempts throughout the semester.
While we did not explicitly prohibit this behavior, students
may have refrained from such practices, knowing that their
submissions could be reviewed by human TAs. In an LLM-
only grading environment, students might be more inclined
to exploit such vulnerabilities. Therefore, implementing ro-
bust safeguards to detect and prevent malicious input remains
essential.

Our study introduces an innovative approach to auto-
mated grading by conducting a real-classroom evaluation in
the Introduction to Bioinformatics course, a carefully
designed program previously reported at ISMB 2024 (Policar
et al. 2024). With a large number of students participating in
a randomized study, we systematically compared the perfor-
mance of multiple open-source and commercial LLMs. Our
findings demonstrate that open-source models can achieve
results comparable to commercial alternatives, offering insti-
tutions greater control over their grading processes. These

Policar et al.

contributions provide valuable insights for the broader adop-
tion of LLM-based grading in structured homework, project
reports, and exams in bioinformatics education and beyond.
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