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Abstract. The onset and progression of a disease are often associated
with changes in the expression of groups of genes from a particular molec-
ular pathway. Gene set enrichment analysis has thus become a widely
used tool in studying disease expression data; however, it has scarcely
been utilized in the domain of survival analysis. Here we propose a com-
putational approach to gene set enrichment analysis tailored to survival
data. Our technique computes a single-sample gene set enrichment score
for a particular gene set, separates the samples into an enriched and non-
enriched cohort, and evaluates the separation according to the difference
in survival of the cohorts. Using our method on the data from The Can-
cer Genome Atlas and Molecular Signatures Database Hallmark gene
set collection, we successfully identified the gene sets whose enrichment
is predictive of survival in particular cancer types. We show that the
results of our method are supported by the empirical literature, where
genes in the top-ranked gene sets are associated with survival prognosis.
Our approach presents the potential of applying gene set enrichment to
the domain of survival analysis, linking the disease-related changes in
molecular pathways to survival prognosis.

Keywords: Gene set ranking · Survival analysis · Censored data ·
Survival curve · Gene expression · Single-sample gene set enrichment
scoring

1 Introduction

The onset of diseases and the prediction of their progression are commonly asso-
ciated with variations in the expression of genes that control specific molecular
pathways. Such variations are often more informative and interpretable when
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considering groups of biologically related genes rather than individual genes
alone [12]. Bioinformatics has developed various computational techniques that
identify which gene sets are relevant to changes in phenotypes. One such tech-
nique is gene set enrichment analysis (GSEA) [22], which calculates an enrich-
ment for each gene set based on the mRNA expression profile of samples and
their binary phenotypes, such as tumour type, response, or exposure to a drug.
In contrast to binary phenotypes, survival data includes information on the time
until a target event and may include censored cases where the event has not yet
occurred. We cannot use GSEA or similar enrichment approaches for such data.

Censored data is common in the clinical setting, and hence there is a need
for approaches for survival-based gene set scoring methods, which are currently,
at best, scarce. Those few reported in the literature rely on assigning gene set-
specific scores to a single patient in the dataset. The gene set activity score
(GSAS) algorithm [25] relates a score with the expression of transcription factors
according to the BASE algorithm [4]. An immune-based prognostic score for
ovarian cancer (IPSOV) [20] uses a similar approach to evaluate the association
between characteristics and overall survival. Both were used for curating gene
sets but not for ranking based on their prognostic power. Similar methods for
single-cell RNA-seq were developed [6].

Here, we report on a technique that can rank gene sets based on their survival
prognostic ability. Our method relies on calculating sample-based gene-set scores
using a single-sample extension of the GSEA [3]. ssGSEA is a method that can
assign a gene set enrichment score to each sample individually, thus not requiring
a phenotype label. We use ssGSEA to order expression profiled samples based
on the expression enrichment of a gene set. Using the median as a splitting
criterion, we create two cohorts of equal size: an enriched and non-enriched
cohort. The extent of enrichment corresponds to the overexpression of genes
in the gene set compared to the average gene expression. Thus, enriched and
non-enriched cohorts relate to mostly above and below-average expression of
genes, respectively. We then evaluate the importance of a gene set for patient
survival using a log-rank test between the cohorts on a Kaplan-Meier survival
plot: the more significant the difference in survival characteristics, the higher the
importance of a gene set. We rank gene sets according to their log-rank p-value
and correct those using Benjamini-Hochberg FDR correction.

2 Methods

Given a gene set, our scoring method for survival data consists of three steps.
First, we normalize gene expression values using a common normalization pro-
cedure. Second, we rank samples based on their gene set enrichment using a
single-sample gene set scoring method [3]. And third, we split samples into two
equal-sized cohorts and evaluate the difference in survival using the log-rank
test. We repeat the procedure for all gene sets in the relevant gene set database
and rank the gene sets according to their score. The ranked list is then subject to
interpretation and further investigation by a molecular biologist. We showcase
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the implemented method on cancer-related data sets and use a standard curated
gene set database.

2.1 Data

We collected cancer tissues from The Cancer Genome Atlas Program (TCGA)
uploaded to the GEO portal (GSE62944) [17]. Samples are organised in data sets
based on their tissue of origin. We collected mRNA sequencing data represented
as a gene expression matrix. Different datasets vary in sample size; thus, we
included only datasets with more than 100 samples (total of 20). We extracted
the sample’s survival time and event occurrence from clinical metadata. Survival
time is the last known date when a patient is still alive. If a patient dies of cancer,
we consider the event has occurred. Otherwise, if its status is unknown or it dies
of unrelated death, its event status is censored. Datasets have varying sample
sizes and ratios of censored data (Table 1).

Table 1. TCGA project statistics about censored data. The N is the number of samples
in the dataset, and the Censored is the ratio of censored samples.

TCGA CESC HNSC KIRC LAML LGG LUAD READ SKCM
N 306 504 542 178 532 541 167 472
Censored 0.807 0.675 0.707 0.348 0.846 0.769 0.940 0.661

Gene expression is stored as transcripts per million (TPM); thus, all expres-
sion values for each sample sum up to a million. We use a standard procedure
of log-transforming each gene expression with pseudo count 1 and z-score nor-
malization for each gene across samples in a dataset. That is, we normalize the
columns of the expression matrix.

Gene sets are sets of genes that encode proteins acting together in some
biological process. Biologists create and curate them to better understand their
function and interactions. We have considered a set of 50 curated gene sets called
Hallmark gene sets from the Molecular Signature Database (MSigDB) [11,22],
where gene sets represent states and processes in human cells (see Table 2).

Table 2. Example of three Hallmark gene sets and a few genes. N is the number of
total genes, and gene names are from HUGO Gene Nomenclature Committee.

Hallmark gene set N corresponding genes
ANGIOGENESIS 36 APOH, FGRF1, ITGAV, LPL, VEGFA, ...
APOPTOSIS 161 BAX, BCL10, CASP1, ERBB2, MADD, ...
GYCOLYSIS 200 EGFR, G6PD, GALK1, LDHA, SOD1,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
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2.2 Single-Sample Gene Set Enrichment Analysis

Single-sample gene set enrichment analysis (ssGSEA) is a single-sample exten-
sion of the GSEA algorithm [3]. It assigns the enrichment score to a single sample
based on the gene expression profile of a sample. This differs from the original
GSEA algorithm, which computes the gene set’s enrichment score based on the
entire data set. The score represents the gene set’s degree of enrichment in a sam-
ple in a given dataset. In simplified terms, gene sets with highly expressed genes
will have a high enrichment score. Gene expression values of a sample are rank
normalized, standardized, are sorted in decreasing order based on their rank r.
Genes in the gene set form a probability mass function (PMF) with probabilities
|r|α, while genes outside form a PMF with genes having equal probability. The
enrichment score of a sample is then represented as the difference of cumulative
density functions for those PMFs. In essence, the enrichment score of a sample
describes the degree of above-average expression of genes in a gene set.

2.3 Gene Set Ranking for Survival Analysis

We aim to evaluate the utility of a gene set in separating samples into enriched
and non-enriched cohorts based on their gene set enrichment score. We abstract
the approach with the following procedure:

Algorithm 1. Gene Set Ranking for Survival Analysis
1: data ← samples with normalized expression values
2: geneSets ← Hallmark gene sets
3: enrichemntScores ← ssGSEA(data, geneSets)
4: for each score ∈ enrichemntScores do
5: cohorts ← split sample by median of enrichment score
6: p ← log-rank test between cohorts

The literature suggests themedian as the least biased approach to split the data
into two cohorts [2]. Our null hypothesis is that both cohorts have the same hazard
function. We test the null hypothesis using a standard log-rank test, a form of χ2

test with one degree of freedom (line 6). The 95% confidence intervals of the χ2 test
statistic are calculated using bootstrap without recalculating ssGSEA enrichment
scores.We repeat the protocol for other gene sets and correct p-values for the false-
discovery rate with the Benjamini-Hochberg procedure.

2.4 Robustness Estimation

We evaluate the robustness of the proposed enrichment scoring in three steps.
First, we perform bootstrap sampling 1000 times to estimate the 95% confidence
interval of the χ2 test statistic without recalculating enrichment scores. Recal-
culating scores for samples on a bootstrapped dataset provides only marginally
different 95% CI but requires much more computation. Our method estimates
the CI using the same sample enrichment scores as in the original data set.
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In the second step, we evaluate how individual genes in the gene set influence
the results compared to random genes. We incrementally remove a subset of
genes and compare the statistic with the original gene set. Additionally, we
remove genes from the gene set and replace them with randomly selected genes.
By repeating the procedure 100 times, we calculate 95% confidence intervals of
evaluation. The third approach evaluates the robustness in terms of sample size.
We downsample the original dataset incrementally to 50% of the original size
and compare the χ2 test statistic. Each downsampling is performed 100 times
to estimate the 95% confidence intervals.

3 Results

With the proposed approach, we could find Hallmark genesets that characterize
cohorts with significantly different survival characteristics for six of our study’s
twenty TCGA cancer datasets. In Table 3, we report each data set’s top three gene
setsandtheir corresponding test statistics.Wewouldfindagene set significant if the
FDRcorrectedp-value isbelow0.01.Thetablealso includesareference foreachgene
set that confirms our findings in the existing literature; for brevity, we only include
themost relevant articles that have already reported the relationbetween genes in a
Hallmark gene set and their prognostic power in a cancer type.

Table 3. Up to three significant top-ranked Hallmark gene sets for each of the six
TCGA cancer types. We report the most relevant reference if p-values are below 0.01.
A complete list of literature references is available on our GitHub repository (see Con-
clusion). CESC - Cervical squamous cell carcinoma and endocervical adenocarcinoma,
HNSC - Head and Neck squamous cell carcinoma, KIRC - Kidney renal clear cell car-
cinoma, LGG - Brain Lower Grade Glioma, LUAD - Lung adenocarcinoma, SKCM -
Skin Cutaneous Melanoma.

TCGA Hallmark χ2 pvalue References

CESC UV_RESPONSE_DN 16.2 2.63e-03 [8]
ANGIOGENESIS 14.7 2.63e-03 [24]
PROTEIN_SECRETION 14.3 2.63e-03 [15]

HNSC GLYCOLYSIS 26.0 1.70e-05 [10]
MTORC1_SIGNALING 17.5 7.25e-04 [21]
XENOBIOTIC_METABOLISM 15.0 1.78e-03 [14]

KIRC HEME_METABOLISM 26.1 1.63e-05 [7]
FATTY_ACID_METABOLISM 18.1 5.28e-04 [5]
ANDROGEN_RESPONSE 16.7 7.35e-04 [27]

LGG EMT 19.4 2.87e-04 [23]
ANGIOGENESIS 18.6 2.87e-04 [16]
COAGULATION 18.3 2.87e-04 [18]

LUAD MTORC1_SIGNALING 14.4 4.02e-03 [13]
HYPOXIA 14.2 4.02e-03 [19]
GLYCOLYSIS 12.1 8.29e-03 [26]

SKCM INTERFERON_GAMMA_RESPONSE 15.0 5.36e-03 [1]
INTERFERON_ALPHA_RESPONSE 13.3 6.78e-03 [9]
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Fig. 1. Kaplan-Meier survival curves for the best-performing gene set. a) CESC-UV
response down, b) HNSC-Gylcolysis, c) KIRC-Heme metabolism, d) LGG-Epithelial
Mesenchymal Transition, e) LUAD - MTORC1 signalling, f) SKCM-IFN-γ response.

We find literature support for all top-ranked gene set-cancer type pairs. For
example, in the case of cervical squamous cell carcinoma and endocervical ade-
nocarcinoma (CESC), the cancer occurrence is highly linked to the infection
with human papillomavirus (HPV) infection. This virus produces proteins that
transform a human cell into a cancer cell by degrading the main tumour sup-
pressor protein, p53. They also inhibit DNA damage repair in response to UV
exposure, leading to extensive mutations. The tumour becomes more invasive by
inducing angiogenesis and forming new blood vessels. Our method finds those
samples with enriched scores in Hallmark gene sets related to those pathways
have lower survival curves.

We observe the survival difference in cohorts suggested by the top-ranked
gene sets for TCGA datasets. We observe that the enriched cohort is linked
to worse survival compared to non-enriched in 4 out of 6 cases (Fig. 1a,b,d,e),
whereas linked to a better prognosis for the other two (Fig. 1c, f).

4 Discussion

The results from the TCGA datasets suggest that our proposed method can
pinpoint the relevant gene sets and that the ranking can identify those best
related to the phenomena represented in the corresponding dataset. Gene set
scoring produces a ranked list with FDR-corrected p-values, but the process is
just a hypothesis generation. We should consider significant results with caution.
However, a large body of literature confirming our case studies findings suggested
that our results are not a result of chance.
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There are also Hallmark gene sets that we expect to be enriched in some
cancer types but did not appear to be significant. These missing results could
stem from our data collection process or assumptions of our proposed method.
Namely, we did not consider prior treatment, genetic predispositions, or other
diseases when modelling survival time. On the other hand, one of the assumptions
is that the ratio between the enriched and non-enriched cohorts is equal. As we
show below, this is a broad overstatement, but the literature suggests it is the
least biased [2].

4.1 Analysis of the Method’s Robustness

We comment on the robustness of the approach by showing an example of the
highest ranked gene set HALLMARK_GYLCOLYSIS on the Head and Neck
squamous cell carcinoma (HNSC) dataset (Fig. 2). We use the bootstrap method
to evaluate the 95% CI of the test statistic. Bootstrap confidence intervals for
higher test statistic values are wider and normally distributed, while lower values
have a more skewed distribution towards 0. We observe the number of unique
samples in a dataset does not affect the size of 95% CI.

Fig. 2. Robustness of the method. We used the TCGA-HNSC dataset and HALL-
MARK_GLYCOLYSIS gene set while comparing χ2 test statistic. a) Reducing the
number of genes in the gene set, b) Replacing gene set genes with random ones, c)
Reducing the number of samples in a data set.

We observe how the number of genes in a gene set affects performance
(Fig. 2a). Removing as much as half of genes from the gene set has a marginal
effect on calculated test statistics. The following shows how scoring is not depen-
dent on any single gene, but their effect is combined in sample ranking. The
redundancy of genes in biological pathways and gene sets is known. In contrast,
when replacing genes in a gene set with random genes, we observe a clear shift
of the test statistic towards lower values (Fig. 2b). Adding noise to the enrich-
ment calculation impacts sample ranking and, thus, the method’s performance.
Confidence intervals of the mean over multiple runs also become smaller due to
the relative distance from zero.
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Removing samples from the dataset results in slowly decreasing values in
the χ2 test statistic. Confidence intervals become wider due to the variation in
possible cohort combinations. Even when removing 50% of all samples, the gene
set is enriched with statistical significance. This suggests that we can use this
method even on smaller sample sizes.

4.2 Varying Splitting Threshold

Our cohort formation assumes equally-sized cohorts. Instead of using the median
score for splitting, we could search for the score threshold that maximizes
the log-rank statistics and find gene set enriched and non-enriched cohorts
of different sizes. Figure 3 shows that such threshold search for the HALL-
MARK_ADIPOGENESIS gene set on the KIRC dataset improves the results.
When using the default median value as a threshold, the log-rank statistic of
8.48 is substantially smaller than 25.37 for the split where 75% of the samples
are placed in the enriched cohort. We have observed similar benefits of threshold
search for other gene sets and data sets.

Fig. 3. Varying cohort split selection on HALLMARK_ADIPOGENESIS and TCGA
KIRC dataset. a) Varying split threshold between 5 - 95%, b,c) Comparison of Kaplan-
Meier plots for 50% and 75% per cent of samples in an enriched cohort.
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5 Conclusions

The abundance of censored data and molecular fingerprints in clinical settings
encourages the development of methods that can shed light on biological pro-
cesses that govern disease progression. We propose a survival-related gene set
ranking method based on single-sample enrichment scoring. An application of
our method on publicly available data sets where the results match those from
the literature confirms that our approach produces meaningful results with rele-
vant implications to prognosis. The simplicity of the proposed method also leaves
room for additional improvements, such as choosing different splitting criteria for
cohort formation. The code and datasets used are available on GitHub (https://
github.com/biolab/AIME-2023-paper) and archived on Zenodo [28].
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