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a - . t r a c t 
Increasing reliance on mobile broadband (MBB) networks for communication, vehicle navigation, healthcare, and 
other critical purposes calls for improved monitoring and troubleshooting. While recent advances in monitoring 
with crowdsourced and network infrastructure-based methods allow us to tap into a number of performance 
metrics from all layers of networking, huge swaths of data remain poorly explored due to a lack of tools suitable for 
fast, interactive, and rigorous MBB data analysis. In this paper we present RICERCANDO, a solution that enables 
rapid exploration of large heterogeneous MBB measurement data as well as the identi/cation and explanation of 
unusual patterns detected in such data. RICERCANDO consists of a preprocessing module ensuring that time-series 
data is stored in the most appropriate form for mining, a rapid exploration module enabling iterative analysis 
of time-series and geomobile data to detect and single-out anomalies, and the advanced mining module that lets 
the analyst deduce root causes of observed anomalies. We implement and release RICERCANDO in open-source, 
and validate its usability on case studies from a pan-European MBB measurement testbed. 

1. Introduction 
In December 2018, after a glitch involving software certi/cates, up 

to 32 million O2 mobile network customers in the United Kingdom and 
some 30 million SoftBank network customers in Japan were left with- 
out access to data services for up to 24 hours [1] . Despite its relatively 
short duration, the incident prompted public outrage and lead O2 to 
compensate its customers and request “tens of millions of dollars ” in 
damages from Ericsson, a network equipment manufacturer whose soft- 
ware caused the issue. The glitch was yet another demonstration of the 
value of mobile connectivity and the need to rapidly detect and under- 
stand the causes of mobile broadband network anomalies. 

In the global connectivity landscape, mobile wireless communica- 
tions play a particularly prominent role. The advent of mobile wireless 
communication had a tremendous impact on numerous aspects of our 
lives – from the way we navigate in unknown environments, communi- 
cate on the move, over the way we pay our bills, to the way we track 
our health and wellbeing. Underpinning and enabling all of this are mo- 
bile broadband (MBB) networks. These networks have witnessed rapid 
expansion recently – MBB subscriptions have grown more than ten-fold 
in the last decade and have reached 5.3 billion globally in 2018 [2] . 
Network performance is improving drastically – a few Mbps download 
speeds enabled by 3G technology at the break of the millennium appear 
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ancient in comparison with a few Gbps delivered by today’s 5G tech- 
nology. Finally, MBBs are becoming more a0ordable – worldwide MBB 
access prices halved between 2013 and 2016 [3] . Together with the ex- 
pansion of novel paradigms that depend on fast ubiquitous connectivity, 
such as the Internet of Things (IoT), e-Health, smart cities and factories, 
the above trends indicate that our reliance on MBB networks is to grow 
even further. 

MBB networks have penetrated into virtually all aspects of our ev- 
eryday lives, became the inseparable part of today’s Internet, and en- 
suring MBB networks’ reliability became a critical issue. Underpinning 
the e0orts to ensure reliability are network monitoring and data analysis 
methods. Despite the advances in MBB performance measurement meth- 
ods [4–8] the problem of the identi/cation of performance anomalies 
and, even more, the identi/cation of root causes of network anomalies 
remains unsolved. First, the sheer breadth of networks, both in terms 
of the number of devices as well as their geographic spread, requires 
consideration of multiple views of the same phenomenon before any 
conclusions can be made. Yet, frequent /ne-grain measurements, nec- 
essary due to the networks’ dynamic behaviour, result in tremendous 
amounts of data, rendering multifaceted/multigranular analysis a chal- 
lenging task. Second, the networks’ multilayered construction calls for 
a joint consideration of (meta) information from di0erent levels, from 
physical layer information on signal strengths, over transport layer re- 
transmissions, to packet delay and jitter. However, these data are col- 
lected by di0erent probes and sensors, and providing a uni/ed view 
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of the data coming from di0erent sources calls for novel intelligent 
data consolidation strategies. Finally, current approaches to explaining 
anomalies are rather ad-hoc and rely on networking experts’ intuition. 
The increasing complexity of MBB networks prevents exhaustive search 
for potential reasons for network malfunctioning, while statistical and 
machine learning methods that could help pinpoint the causes of net- 
work anomalies often remain outside the network administrators’ ex- 
pertise and are challenging to apply within the existing network tra1c 
analysis and visualisation tools. 

In this paper we tackle the problem of detecting and explaining MBB 
network performance issues. We do that through RICERCANDO, a MBB 
network data analysis framework developed in tight collaboration of 
networking and data mining experts and designed to answer the above- 
listed challenges. RICERCANDO enables multi-staged and 2exible data 
analysis. Our framework handles the /rst stage of the analysis through a 
data representation scheme that merges data of di0erent types and from 
di0erent sources, and adapts them to time series-based organisation suit- 
able for querying with a di0erent level of granularity. RICERCANDO 
then enables scalable interactive visual analysis of big network measure- 
ment data. Next, we devise anomaly detection methods that pinpoint 
measurements where network performance indicators signi/cantly devi- 
ate from the expected values. Finally, through RICERCANDO’s machine 
learning pipeline designed to help with the identi/cation of key factors 
that might have caused the observed anomalies, we introduce rigorous 
statistical and machine learning methodology to MBB data analysis. 

Speci/c contributions that RICERCANDO brings to the research area 
of network management include: 
• Design of data merging and re-sampling method for agile data ma- 
nipulation; 

• Implementation of adaptable and multi-dimensional temporal and 
geographical visualisation of MBB measurement data; 

• Implementation of various anomaly detection methods suitable for 
time-series data; 

• Inclusion of support for modern data mining techniques in network 
data analysis. 
Through a case study conduced on data collected through a pan- 

European MBB network measurement testbed we demonstrate RICER- 
CANDO’s ability to detect and explain network anomalies. Finally, we 
have released RICERCANDO as an open-source software and we invite 
the community to join our e0orts towards supporting rapid MBB net- 
work measurement data analysis. 
2. Related work 
2.1. Monitoring MBB networks and measurement data management 

A systematic method of monitoring is crucial for assessing the qual- 
ity of service and troubleshooting in mobile broadband networks. Re- 
cently, a wide range of approaches for MBB measurements have been 
developed [9] . Approaches rely on either passive [5,8] or active mea- 
surements [10] , or on a hybrid measurement methodology that com- 
bines both [4,11–13] . Passive measurements merely observe the existing 
network tra1c, while active measurements inject own packets in order 
to evaluate performance metrics. The downside of active measurements 
is that the measurement process may impact the actual network under 
test. 

In terms of the measurement point locations, certain approaches, 
especially those initiated by national regulators, use dedicated moni- 
toring equipment and a small number of controlled nodes, while oth- 
ers rely on crowdsourced measurements conducted by a large num- 
ber of often uncoordinated users [14] . The former have the bene/t of 
being unrestricted by the provider, of viewing the network as users, 
and of covering wide geographical areas. OpenSignal, for instance, has 
more than 100 million users across the globe [15] . However, crowd- 
sourced measurements su0er from unreliability due to the lack of con- 

trol over the measurement equipment. A mobile app-based measure- 
ment software may be run on di0erent phone models, with di0erent 
implementations of the operating system, devices running di0erent ap- 
plications in parallel to the measurement app, di0erent hardware issues 
(e.g. bent antennas), and devices placed in various locations during mea- 
surements (e.g. bag/pocket/hand), all of which may impact measure- 
ment results [16,17] . Recent commercial and research initiatives hence 
use crowdsourced-like approach with specialised equipment dedicated 
to network measurements [18] . 

Irrespective of the measurement approach, MBB measurement data 
is large-scale, temporal, heterogeneous, and shaped by a number of fac- 
tors related to measurement methodology and equipment. Storing, pro- 
cessing and reasoning upon such data is challenging, and a number of 
solutions providing a structured approach to measurement data analy- 
sis have been developed. Svoboda et al. demonstrated the importance of 
using a well-de/ned methodology for packet delay measurement anal- 
ysis in order to obtain meaningful interpretation of the results [11] . 
CoMo provides a structure for fast prototyping of network measurement 
mining applications [19] . Mostly concerned with data storage and 2ow, 
CoMo does not provide su1cient support for advanced analytics. Future 
e0orts were aimed at either increasing scalability, usability, or the num- 
ber of supported options for data analysis. ENTRADA, for instance, con- 
verts pcap log /le to Apache Parquet and enables stream mining [20] . 
Similarly, DBStream was built to support rolling big data analysis [21] . 
The tool’s utility has been demonstrated on a few use cases, including 
on the analysis of signalling and data transfer behaviour of di0erent 
mobile device types and di0erent operating systems [22] . Designed by 
networking experts, these systems usually provide solutions to network 
measurement data handling, yet stop at the point where advanced data 
mining is needed. 
2.2. Mining MBB measurements 

The complexity of MBB measurement data prompted networking re- 
searchers to resort to ad-hoc and task-speci/c approaches to data min- 
ing. Baltrunas et al. show that even simple correlation can help with 
network reliability estimates [23] . In order to pro/le network coverage 
in Norway, Lutu et al. perform hierarchical clustering of measurement 
data collected via train-mounted probes [24] . Narayanan et al. propose 
a feature distribution similarity graph to analyse spatio-temporal mobile 
measurement data [25] . The authors show the utility of the approach in 
a case study of pro/ling mobile users’ behaviour from call detail records. 
ESkyPRO probe employs supervised classi/cation to detect encrypted 
Skype tra1c [26] . With RICERCANDO we go a step further and de- 
vise a rich framework focused on discovering general anomalies in MBB 
measurement data and identifying their root causes using unsupervised 
learning. 

More advanced approaches try to automate the mining process, espe- 
cially when it comes to anomaly detection, a key issue in network data 
analysis. An overview of statistical methods for anomaly detection for 
computer networking experts was presented by Callegari et al in [27] . 
A recent advancement in the area of automated detection is ADAM, 
a system that detects anomalies by estimating Kullback-Leibler diver- 
gence between the incoming and previously collected data [4] . Once 
an anomaly is detected, the system performs factor analysis to identify 
features exhibiting a similar abrupt change. RCA tool initially detects 
change points by measuring the entropy of considered features [28] . 
It then considers the full statistical distribution of the tra1c features 
to characterise anomalies. Ricciato et al. suggested two approaches to 
bottleneck detection, the /rst one based on statistical analysis of the 
aggregate rate, and the second method based on TCP performance indi- 
cators [29] . Coluccia et al. proposed an anomaly detection methodology 
that identi/es statistically signi/cant deviations from the past behaviour 
using Maximum Entropy modelling [30] . In another study, the authors 
investigated distributions of multiple features to detect tra1c anoma- 
lies, indicating that the alarm correlation across features may augment 



V. Pejovi ć, I. Majhen and M. Jane ž et al. Computer Networks 177 (2020) 107294 
the accuracy of the detector [31] . In [32] Li et al. describe a random 
forest-based approach for anomaly detection in passive measurements. 
While a clear intuition behind the rules of tree splitting provides a step 
towards interpretable machine learning, the approach does not yield 
a clear picture of which contextual parameter may have caused the 
anomaly. Furthermore, unlike RICERCANDO, work presented in [32] is 
not a full-2edged open-source software framework. Association rule 
mining is another popular approach for identifying potential causes of 
network malfunctions. Zargarian et al. present a method for mining asso- 
ciation rules describing temporally and spatially correlated alarm events 
from a network log [33] . Similarly to RICERCANDO, this work aims to 
support networking experts by relieving them from the burden of big 
data analysis. RICERCANDO, however, integrates with Orange [34] , a 
data mining suite that hosts a wide range of statistical tools, while also 
including association rule mining. Moreover, RICERCANDO provides 
tools for 2exible data exploration enabling e1cient visualisation of very 
large measurement datasets. Ahmed et al. identi/ed network providers, 
locations, device types, and applications, or combinations of the above, 
that lead to performance degradation in a large 3G network [35] . The 
proposed method relies on iterative construction of regression models 
to detect underperforming measurements and association rule mining in 
order to single out the most prominent combinations. Intuitively, such 
an approach focuses on the most apparent, recurring anomalies. Our 
approach to anomaly detection (presented in Section 4 ) enables closer 
inspection and detection of even short-lasting deviations from the ex- 
pected performance, while also providing statistical explanations for the 
discrepancy. 

In summary, the existing work in the area of network measurement 
analysis primarily focuses on either measurement data storage and man- 
agement [19–21] , or on the development of methods for processing 
and pro/ling network measurements, and identifying anomalies in the 
data [4,25,27,30] . Furthermore, these tools often stop short of provid- 
ing advanced data mining capabilities and instead rely on a networking 
expert’s presence in the loop 2 . Finally, despite interactive live data vi- 
sualisation likely being the most e1cient means of harnessing expert 
knowledge [38] , the presented tools seldom provide any advanced vi- 
sualisation capabilities. Recognising the shortcomings of the above ap- 
proaches as well as the limitations of existing visualisation tools (further 
elaborated in Section 4.2 ), in RICERCANDO we implement a suite of 
data processing, mining, and visualisation methods speci/cally tailored 
for MBB measurement data analysis. 
3. MBB Measurement data characteristics and RICERCANDO 
analysis approach 

A careful examination of the characteristics of MBB measurements 
represents a cornerstone of RICERCANDO. As discussed in the previous 
section, MBB measurements system can rely on passive or active mea- 
surements, and can be performed through well-planned installations or 
in an opportunistic crowd-sourced manner. Yet, certain properties char- 
acterise MBB measurements irrespective of the measurement system im- 
plementation. 

We base our requirements analysis on the examination of the re- 
lated work of MBB measurement mining ( Section 2 ), but also on an in- 
depth analysis of a state-of-the-art MBB measurement platform – MON- 
ROE. MONROE is an open access hardware-based platform for indepen- 
dent, multihomed, large-scale experimentation in MBB networks [18] . 
The MONROE project aims to create a pan-national reliable open-access 
measurement platform for MBB networks 3 . The core of the system is a 
2 This is explicitly evident in Siekkinen et al. TCP RCA approach [36] , but also 

through subtle issues related to data collection and interpretation process. For 
instance, Michelinakis et al. show how peculiarities of packet scheduling at an 
LTE base station impact capacity estimates inferred through measurements [37] . 
3 http://www.monroe-project.eu 

MONROE node, a custom-built device /tted with a Debian-based sin- 
gle board computer and up to three LTE modems connected to di0er- 
ent providers. A centralised experiment scheduling system allows MON- 
ROE users to post custom-made experiments to distributed nodes and 
remotely collect measurement results. In addition, each node indepen- 
dently executes certain background experiments, such as periodic RTT 
measurements to MONROE servers. Finally, all the experiment data and 
meta-data are collected in a MONROE database implemented in Cas- 
sandra 4 . In 2018, the project operated 150 measurement nodes in four 
European countries, with more than a half of the nodes being mounted 
on buses, trains, and delivery trucks. 

We have been conducting MONROE data analyses from the projects 
inception in 2016 and have obtained a thorough understanding of the 
characteristics of the measurement data. Similarly to other systems, 
MONROE measurement data are characterised by: 
• Spatio-temporality: measurement nodes are geographically dis- 
persed and often mobile; 

• Multi-modality: multiple aspects of network performance (RTT, 
throughput, etc.) and meta-data (location, CPU load, etc.) are sam- 
pled in parallel; 

• Heterogeneity of data exhibited through their varying granularity 
and the lack of synchrony among di0erent measured features; 

• Impact of the measurement methodology, hardware, and software 
on the measurement results; 

• Lack of ground truth data. 
A MBB data analysis tool has to cope with the above characteristics of 

the data on the implementation level. On the higher level, however, the 
tool has to enable comprehensive analysis, requirements of which have 
been discussed among the research community before. For instance, in 
2006 Ricciato indicated that network tra1c analysis should include sta- 
tistical analysis that goes beyond simple ad-hoc solutions, visualisation 
and multidimensional exploration by networking experts and advanced 
machine learning algorithms, and should allow the data to be pipelined 
to other tools [39] . Recently, needs for additional higher-level infer- 
ences from MBB measurements, such as Net neutrality violation detec- 
tion, have also been voiced [40] . 

We design RICERCANDO to take into account the unique character- 
istics of the MBB measurement data and directly answer the needs of 
the research community. In RICERCANDO, we explicitly support inter- 
active analysis and put the user in the loop. Moreover, our data storage 
paradigm is adapted to support rapid visualisation and experimentation, 
so that the expert knowledge can be harnessed in the best possible way. 
Similarly, identifying a need for automated statistical analysis, we create 
a machine learning pipeline that automatically detects and suggests ex- 
planations for network anomalies. At the same time, the system’s visual 
component maintains a close dialog with an expert enabling iterative in- 
vestigation until the root cause of the issue is identi/ed. Finally, recog- 
nising the uniqueness of each measurement setup and varying goals of 
those who analyse networks, we do not restrict RICERCANDO to par- 
ticular mining techniques. Rather, we integrate it with the popular data 
mining suite Orange 5 , allowing a wide range of current and future data 
mining approaches. 
4. RICERCANDO framework 

RICERCANDO is structured around modules that together create a 
data mining pipeline ( Fig. 1 ). The framework assumes that the data is 
stored in a key-value database, such as Cassandra 6 used by the MON- 
ROE project. Data Preprocessing module ( Section 4.1.1 ) transforms and 
stores the data so that it can be quickly retrieved along the temporal di- 
mension. Data Merging Interface ( Section 4.1.2 ) enables di0erent views 
4 http://cassandra.apache.org 
5 http://orange.biolab.si 
6 http://cassandra.apache.org/ 
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Fig. 1. An overview of RICERCANDO framework. Boxes represent framework’s 
modules, while arrows represent data movement. Darker (red) arrows indicate 
that data is given in Python pandas format, suitable for interchange among dif- 
ferent processing modules and tools. (For interpretation of the references to 
colour in this /gure legend, the reader is referred to the web version of this 
article.) 
over the data. Rapid Exploration ( Sections 4.2 and 4.3 ) module consists 
of three submodules that allow interactive visualisation of time-series 
data, geomobile data visualisation, and anomaly detection. Finally, Ad- 
vanced Mining module ( Section 4.4 ) interfaces with Orange data mining 
suite and enables sophisticated machine learning and additional data 
visualisation methods. 

RICERCANDO implementation consists of a core ricercando 
Python library 7 , data preprocessing scripts written in Bash and Python, 
Jupyter Notebooks for visual analysis, and an add-on for Orange data 
mining suite. All the code, together with the installation instructions is 
available on GitHub 8 . 
4.1. Data preprocessing and interfacing 
4.1.1. Storage and re-sampling 

MBB measurement data are often collected in relational or key-value 
databases, as they enable easy and e1cient storage [4,21,41] . However, 
stored in such a manner, data are not suitable for rapid interactive explo- 
ration. This is especially true for data with a temporal dimension, which 
is common in MBB measurements – nodes move in space/time, RTTs are 
gathered with periodic pings, anomalies and glitches impact subsequent 
node behaviour. Key-value and traditional relational databases severely 
limit the performance and the 2exibility of writing queries over time- 
series data. The volume of data and metadata gathered by MBB mea- 
surements can be large. For instance, RTT measurements from MON- 
ROE platform produce approximately 20 million entries per day. Data 
storage needs to support data sampling to allow zooming in and out on 
a selected chunk of data, or to support concurrent analysis of data com- 
ing from multiple nodes. MBB data comes from various sources, such as 
multiple nodes and multiple processes within a measurement node, and 
are often not aligned along the common time axis. Consequently, merg- 
ing the data in order to enable multidimensional analysis is challenging. 

In RICERCANDO we devise data transformation and data storage 
schemas to transform MBB data into minable representations. We use 
temporal data abstraction and feature engineering guided by domain- 
speci/c knowledge, and we construct scripts that implement various 
data transformation tasks. To solve the temporal data mining problem 
7 ricercando is also available via pip installer 
8 http://github.com/ivek1312/ricercando/ 

we transform the data to a time-series database 9 We store time-series 
data with the minimal temporal granularity determined by the mea- 
surement equipment time resolution (usually in millisecond range). We 
also sample and store the data at a di0erent granularity (e.g. 1 s, 1 min, 
30 min, etc.). This is crucial for enabling interactive visualisation – if a 
user requests to visualise a whole day of data, we fetch data of a coarser 
temporal granularity; for examining particular anomalies, we zoom in 
and provide /ne-grain data. When sampling to low resolution the ag- 
gregation of values within the period depends on the type of data. Thus, 
with a few exceptions, for categorical variables we use mode function 
that returns the most frequently observed value in the considered time 
frame, while for numerical we use either min, max , or mean . The intu- 
ition for di0erent aggregating functions stems from the diverse nature of 
the observed variables. For instance, RSSI values are often volatile even 
between subsequent closely-spaced measurements, thus their mean is 
usually considered [23] . On the other hand, for understanding network 
congestion, the minimum of the achieved throughput may be more in- 
formative than its mean. Finally, for the number of network users in a 
time period and for certain network resources (e.g. radio access bearer 
requests) the maximum value in a time slice may be the most appropri- 
ate aggregation function for network troubleshooting purposes [43] . 
4.1.2. Merging data from different sources 

Data mining and modelling is performed on datasets consisting of 
instances , where each instance represents a data point in a multidimen- 
sional feature space. For example, a measurement of the GPS location, 
RTT, and the state of the measurement node at a point in time. As mea- 
surement data come from various non-synchronised sources, we often 
have to merge individual data streams along the same time axis. A sketch 
of the merging process we implement in the Data Merging Interface 
module is shown in Fig. 2 . For each of the time series (e.g. ping RTT, 
GPS coordinates, etc.) we /nd an intersection with a selected moment on 
the common time axis, and then apply a di0erent strategy for inferring 
the value at the requested moment in time. 

Similarly to the need for di0erent aggregation strategies elaborated 
in Section 4.1.1 , the need for a range of value inference strategies stems 
from the diverse nature of the observed variables. For instance, a change 
in a user’s location is limited by the physical properties, such as the 
speed of movement. Thus, for GPS coordinates we perform interpola- 
tion between the last measurement before and the /rst measurement 
after the given moment in time. For RTT we take an average of the mea- 
surements recorded in a time window preceding the current moment. 
Note that the approach used with the GPS coordinates would not be ap- 
propriate here – network malfunctions or connection switches (e.g. from 
3G to LTE connection) often result in sudden RTT changes, which would 
be masked by the simple interpolation approach. For features indicating 
discrete events we keep track of the node’s state and assign the last ob- 
served state to the instance we are inferring the value for. For example, 
the last value of the indicator stating that an experiment is currently 
running at the node would be extrapolated to the currently considered 
time. Finally, RICERCANDO allows further tuning of the merging pro- 
cess, for example, by specifying the minimum freshness value of the data 
before it is included in a data instance – e.g. if no download speed mea- 
surements were taken in the last 60 s, the instance will contain a null 
value for download speed . This can be further extended to “tighten ” the 
reliability of the inferred values – e.g. the larger the di0erence between 
the two GPS points we interpolate from, the less con/dent we become 
about the inferred value and we might consider replacing it with a null 
value. While we steer away from a fully automated merging and require 
9 We use In2uxDB ( www.in2uxdata.com ) in our implementation; compared 

to popular alternatives, such as Elasticsearch, In2uxDB delivers 6.1x greater 
write throughput, uses 2.5x less disk space, and delivered 8.2x faster response 
times [42] ; furthermore, In2uxDB supports time-series signal analysis out of the 
box. Nevertheless, RICERCANDO is not dependent on In2uxDB and alternative 
time-series databases can also be used. 

http://github.com/ivek1312/ricercando/
http://www.influxdata.com
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Fig. 2. Data merging along the common time axis in 
RICERCANDO. 

input from a networking expert, this guarantees that the further analysis 
is done on truly meaningful data. 10 
4.2. Interactive visualisation of big MBB measurements data 

Iterative examination of visualised data is crucial for network data 
mining [39] . These data, however, are multidimensional, temporal, and 
geo-mobile, and very large, exemplifying the common “three Vs ” chal- 
lenges in big data visualisation: volume, variety, and velocity [47] . Con- 
ventional data visualisation tools that come with data mining pack- 
ages, such as WEKA or Orange, struggle with MBB data, moreover, 
the amount of data might even overburden specialised tools, such as 
Tableau [48] . Interactive Web-based visualisation frameworks, such as 
Bokeh 11 , Holoviews 12 and Plotly 13 , strive to tackle the above chal- 
lenges, yet, they remain limited by the Web technology – it can handle 
only a limited amount of points before the Web browser chokes [49] . 
Grafana 14 represents a powerful and popular tool for data visualisation, 
yet, as in our framework data visualisation remains highly interactive 
and tightly connected with the data modelling pipeline, it requires a be- 
spoke solution. For instance, our time-series and geo-visualisation tools 
perform adaptive sampling depending on the zoom level, interact with 
heterogeneous data merging and allow the selected data to be quickly 
funnelled into a Python Pandas Dataframe and forwarded to Orange for 
further inspection. Using an o0-the-shelf solution for data visualisation 
would preclude such a 2exible connection among di0erent parts of our 
framework. 

To visualise a large number of data points the existing solutions 
rely on methods, such as decimation and data-shading. Decimation re- 
samples data in advance and displays only a prede/ned maximum num- 
ber of data points. Data-shading plots rasterised images rendered to 
show the amount of detail appropriate for the current zoom level. While 
generally applicable, these methods are not suitable for interactive MBB 
data analysis – decimation omits random points, which may impact ex- 
perts’ interpretation of the observed measurements, and data-shading 
prevents interactivity since rasterised image disallow further data selec- 
tion and forwarding to a machine learning pipeline. Finally, neither of 
the techniques tackles the problem of volume – how to automatically 
prepare the right amount of data for visualisation at query time. 
10 The inclusion of domain experts early on in the data preprocessing stage is 
often emphasised as a crucial step in modern data mining [44–46] . 
11 https://bokeh.org/ 
12 http://holoviews.org/ 
13 https://plot.ly/ 
14 https://grafana.com/ 

RICERCANDO’s original approach to data preprocessing (see 
Section 4.1 ) is naturally suited for tackling the “three Vs ” chal- 
lenge. The volume challenge is tackled by storing and sampling the 
data at di0erent granularity, the variety issue is tackled with dif- 
ferent merging/preprocessing techniques, and velocity is tackled with 
speed-optimised adaptable granularity queries. Based on the above ap- 
proaches, we develop two modules for rapid interactive visualisation 
of MBB measurement data – one for time-series visualisation, the other 
for geographical data visualisation, both implemented in the form of 
Jupyter Notebooks. We opted for this environment, as opposed to cus- 
tom stand-alone programs, as it allows quick prototyping and tweaking 
according to speci/c user needs and given datasets. 

Time-Series Visualisation module for a selected network probe 
(node) and a time period plots a target key performance indicator (KPI) 
on a separate timeline for each of the node’s interfaces. An additional di- 
mension can be represented through the colouring of each of the points 
( Fig. 3 ). User is able to choose the preferred colour palette from var- 
ious options. Finally, the tool enables hovering over a point, showing 
values of all the other dimensions associated with the same data point. 
A key property of the Time-Series Visualisation module is its adaptabil- 
ity to the amount of to-be-shown data. It relies on getdf function from 
ricercando Python module, which, for the given zoom level retrieves 
data from the database with an appropriate resolution, in order to pre- 
serve the interactivity of the notebook. For example, viewing a whole 
week worth of measurements might use data aggregated on 30 min in- 
tervals, whereas zooming into a particular RTT anomaly might fetch and 
show data with 10 ms granularity. 

Geographical Data Visualisation module ( Fig. 4 ) supports visu- 
alisation of a selected KPI of geo-referenced data from a measurement 
node on a separate map for each of the node’s interfaces, for the given 
time period. Such visualisation is a key tool for the identi/cation of is- 
sues a0ecting particular geographic regions. Similarly to the Time Series 
Visualisation module, hovering over a point shows values of all the other 
dimensions associated with the same data point. Geographical Data Vi- 
sualisation module, too, relies on getdf function for adaptive data re- 
trieval, so that the retrieved data resolution is adjusted to the current 
map zoom level. 

RICERCANDO modules, such as Time Series Visualisation, Geograph- 
ical Data Visualisation, Anomaly Detection, and Advanced Mining mod- 
ule are designed to /t into each other just like LEGO® bricks and al- 
low 2exible data analysis work2ows. To support interoperability among 
modules we rely on Python pandas DataFrame (dark/red lines in Fig. 1 ). 
Indeed, each of the Jupyter notebook-based modules allows data selec- 
tion (e.g. selecting a range of data points on a map) and storage (as a 
DataFrame on local storage), and retrieval from another module, e.g. in 
order to perform advanced mining in Orange. 

https://bokeh.org/
http://holoviews.org/
https://plot.ly/
https://grafana.com/
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Fig. 3. Time-series visualisation in RICERCANDO. Y-axis represents RTT measured on each of the two interfaces of the same node, while colouring corresponds 
to the cell id (CID). Vertical lines represent MONROE experiment start/stop/loading moments. Plots below each of the RTT series show the frequency used by the 
interface. Figure shows node 562 with two interfaces. RTT in interface on top varied from 60 to 100 ms until 5h, while switching between di0erent cell ids. From 
5h to 20h the cell id does not change and also RTT stays almost constant at 60 ms. The operating frequency from 4h to 21h is 1800 MHz. 
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Fig. 4. Geographical visualisation of RTT measured on two interfaces of the mobile node travelling through Oslo. The shades of the trace correspond to di0erent 
values of RTT. On the right image a selected region contains RTT data stored for further analysis. 
4.3. Anomaly detection tool 

Anomalies occur frequently in computer network measurement data 
and can be caused by anything from miscon/gurations to cyber at- 
tacks [50,51] . Anomaly detection plays a central role in RICERCANDO. 
We implement a Jupyter Notebook that enables automatic detection and 
visual inspection of anomalies in the data ( Fig. 8 ). Numerous detec- 
tion methods relying on a range of techniques, from mining association 
rules [52] , to modelling with Markov processes [53] , have been pro- 
posed for anomaly inference (see [54] for a survey of anomaly detection 
approaches). 

What is an anomaly? Without any knowledge of the underlying 
system that generates the data, an anomaly detection system aims to 
/nd “su1ciently di0erent ” measurements in a stream of data. Alterna- 
tively, the data are labelled as “anomalous ” if they do not follow the 
patterns that a domain expert expects, based on her mental model of 
how the MBB network “should ” behave. While the /rst de/nition leaves 
us struggling to /nd parameter values that would de/ne “su1ciently 
di0erent ” behaviour in automated anomaly detection systems (Romirer 
and Ricciato have pondered on this question in the context of delay mea- 
surements in 3G networks [55] ), the second de/nition is limited by the 
expert’s (mis)understanding of the network phenomena. Thus, in RICER- 
CANDO we aim to judiciously guide an expert in reasoning about the 
observed deviations. We implement methods for automated labelling of 
“su1ciently di0erent ” measurements, while at the same time the meth- 
ods’ parameters allow the experts, guided by an immediate visual feed- 
back, to adapt the labelling to the currently considered situation. Fur- 
ther, we “encode ” the underlying knowledge about the system to label 
as anomalous only those values that do not conform to a pre-constructed 
model, therefore, moving the automation closer to the “expert ” side of 
the spectrum. 

An anomaly is usually a previously unseen event and without sub- 
stantial involvement of networking experts we cannot expect that a la- 
belled training data set is available. Thus, lacking the ground truth, we 
use unsupervised machine learning for anomaly detection. Certain MBB 
measurements are clearly anomalous, characterised by rapid changes 
like sudden very high RTT. Consequently, our /rst approach to anomaly 
detection relies on a simple comparison of a signal with the previously 

observed data. Yet, observed changes in MBB measurements need not be 
anomalies, but re2ections of natural changes in the underlying connec- 
tivity (e.g. a hando0 from 4G to 3G). Thus, our second more advanced 
approach to anomaly detection relies on detecting deviations from the 
expected measurement values, where these values are predicted by a 
model that takes the underlying connectivity context into account. Fi- 
nally, we augment our toolbox with an anomaly detection method that 
is founded in a statistical comparison between two sets of measured 
values. 

In summary, RICERCANDO implements three anomaly detection 
methods: 
• Rolling mean – a method based on a rolling window that compares 
data in the current window with a long-term mean of the measure- 
ments. Data points that are a number of standard deviations away 
from the rolling mean are regarded as outliers and a large enough 
cluster of outliers is identi/ed as an anomalous region. The rolling 
analysis recognises fast and large changes of the values in a time 
series. The speed of change is related to the size of a rolling win- 
dow, which in turn is related to the amount of data explored by the 
window. The number of standard deviations from the rolling mean 
determines the sensitivity of the method to the observed change. Dif- 
ferent parameters for anomaly detection, including the rolling win- 
dow size and the standard deviations threshold, can be set by the 
user. A networking expert can identify and /x the parameters for 
di0erent applications, thus enabling subsequent automatic anomaly 
detection. With this method abrupt falls or rises (spikes) are treated 
as anomalies, while, for example, a gradually rising RTT due to in- 
creased network congestion would not be considered an anomaly. 

• Baseline comparison – a detector that compares the actual value 
of a data point with the value predicted based on a pre-constructed 
model. Such a method can, for example, learn the expected RTT for 
a node using 4G technology experiencing a certain RSRQ in a cer- 
tain area, and correctly attribute changes in RTT to either contex- 
tual changes – like fallback from 4G to 3G – or to an unexplained 
anomaly. Due to a large parameter space the observed data point 
might come with a previously unseen context. To cope with such a 
case, RICERCANDO builds the model using the quantile regression 
forest technique [56] that predicts the dependent variable value even 
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Fig. 5. Anomaly detector determined two di0erent anomaly re- 
gions (higher RTT values shaded grey) within the same data by 
using distinct values of detection parameters in each case. 

if the context has not been observed before. Furthermore, we build a 
model by using top N (by default 10) percent of the best performing 
measurements from a given context. This ensures that well perform- 
ing points are not misclassi/ed as anomalies. 

• Distribution comparison 15 – a detector that empirically infers dis- 
tributions of the same variable in di0erent segments of the data us- 
ing kernel density estimation technique, and then compares the dis- 
tributions using Kullback-Leibler divergence. Signi/cant di0erence 
between the previous and currently observed data distributions may 
indicate an anomaly. 
The developed notebook allows the user to select a measurement 

node, a target KPI, and a time span in which the data is analysed. Ad- 
ditionally, the user can set a number of parameters that control the op- 
eration of the tool, including the sensitivity of anomaly detection. In 
the /rst step, the developed tool automatically detects the anomalies in 
measured data based on one of the above detection methods selected. 
Besides these methods, the tool supports a simple integration of new 
anomaly detectors. After one or more anomalies are detected, the tool 
enables informative visualisation of regular and anomalous data. Based 
on visual results a domain expert may adjust initial parameters to con- 
trol the shape of the highlighted anomalies. This is demonstrated in 
Fig. 5 , where tuning of parameters produced two di0erent anomaly 
regions within the same data. Descriptive visualisation also allows the 
experts to quickly /nd important aspects in the data. The data can then 
be saved so that anomalous regions are automatically labelled for fur- 
ther processing. 

An important feature of the anomaly detection tool is concurrent 
anomaly detection. MBB data often contains measurements from a large 
number of nodes connected to a few di0erent network providers, and de- 
tecting anomalies that simultaneously appear at all interfaces connected 
to the same provider is crucial for identifying whether the anomaly is 
isolated or a0ecting the whole network. In RICERCANDO we implement 
an optional concurrent analysis that takes into account all probes con- 
nected to a particular network. The output of the tool is a time diagram 
showing a cumulative count of anomalies over time for the selected net- 
work – moments when such a count is high indicate network-wide issues 
(see Section 5.4 ). 

In all developed anomaly detection methods user can set various 
parameters. Identifying the relevant set of parameter values is indeed a 
15 This method is not suitable for streaming data analysis, therefore, we im- 
plement it in the Anomaly Detection module, but do not expose it through our 
GUI. 

complex task and must be done carefully by experts in order to enable 
automatic anomaly detection. 
4.4. Advanced mining 

Identifying root causes of the observed MBB behaviour is the /nal 
goal of data analysis. The existing tools for MBB data analysis were 
mostly developed by computer networking experts and support data pre- 
processing, visualisation, and simple statistical analysis [4,19,23,36] . 
RICERCANDO is developed in close collaboration with highly experi- 
enced data mining experts – one of the RICERCANDO authors is leading 
data mining research lab with more than 20 years of practical data min- 
ing experience in a range of domains. This synergy enables us to support 
advanced data mining for root cause analysis in RICERCANDO. 

A key enabler of advanced mining in RICERCANDO is Orange – a 
popular GUI-based data mining toolbox where data processing work- 
2ows are constructed through visual programming by combing widgets . 
A widget is a computational unit with interactive visual interface that 
performs a particular function related to data preprocessing, visualisa- 
tion, and modelling. Orange supports a range of machine learning meth- 
ods, from unsupervised (clustering), to supervised (classi/ers, regres- 
sions), from basic (e.g. naive Bayesian) to more complex state-of-the-art 
ones (e.g. neural networks). Fig. 6 depicts MONROE measurement data 
analysis using an Orange work2ow of widgets. 

Orange is limited in the amount of data it can handle. Thus, we 
use it as the last step of RICERCANDO analysis. We develop an Orange 
widget to import the data from RICERCANDO rapid exploration note- 
books. Users can, thus, perform preliminary visualisation and analysis 
of a larger dataset in a Jupyter Notebook before selecting a particularly 
interesting dataset and analysing it further in Orange. In addition, we 
develop a widget for direct access to MONROE data stored in a time- 
series database. 

One of the main questions a network analyst is interested in is which 
factors may cause a particular anomaly? [57] . To answer this, we de- 
velop an Orange widget that identi/es Significant Groups of features that 
di0erentiate between regular and anomalous data. Note that a dataset 
containing labelled regular and anomalous data is automatically cre- 
ated by our Anomaly Detection module and imported to Orange via the 
iPython Connector widget. The main test implemented within the Sig- 
ni/cant Groups widget is the hypergeometric test. The test traverses all 
subsets of features and calculates the enrichment each subset brings to 
the anomalous data region. Sorting the subsets according to the enrich- 
ment, while also taking into account their signi/cance levels, gives us a 
list of most probable causes for the detected anomaly. In addition, the 
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Fig. 6. MONROE data analysis in Orange. A work2ow composed of Orange widgets is shown in the upper left corner. Each widget performs a speci/c function. A 
window corresponding to Scatter Plot Before widget (lower left) shows anomalous RTT behaviour. Scatter Plot After window (middle right) shows distinct RTT dips. 
Feature Constructor widget is used for splitting the data into groups with low and normal RTT. Finally, Significant Groups widget performs a hypergeometric test and 
identi/es Scheduling.Task.Started event as a feature value that discerns between the two groups, indicating that a background experiment impacts the 
observed RTT. 
widget supports other comparison tests that may help with root cause 
analysis, such as the permutation test and the t -test. 
5. Case studies 

The MONROE project provides large amount of data of various MBB 
network parameters. Irregular patterns in the data can quickly be spot- 
ted using the visualisations. However, to precisely de/ne visually ob- 
served anomalies and to discover hidden anomalies that are not easy to 
illustrate, we developed an automatic anomaly detector. Beside identi/- 
cation of anomalies the computer tool also facilitates the determination 
of their root causes. Among multiple occurrences of anomalies that we 
found, selected case studies focused on RTT data are thoroughly de- 
scribed in this section. 
5.1. Connection mode change 

The /rst anomaly we identi/ed by using our automatic detection 
tool’s rolling mean method is depicted in Fig. 7 (top). The /gure shows 
that on the given measurement node after 11:30 the RTT mean changes 
drastically from below 100 ms to approximately 250 ms. The anomaly 
detector automatically recognised the shift and marked it as an anomaly 
(grey region). Running the hypergeometric test and calculating the en- 
richment each feature subset brings to the anomalous data region, we 
found out that a change in the device’s connectivity mode is the cul- 
prit. A switch from LTE to 3G perfectly coincides with the anomaly, as 
shown in Fig. 7 depicting the RTT and the interface’s mode on the com- 
mon time axis. Note that by automating the signi/cant feature search 
we remove the need for comprehensive visual analysis. 

This example shows the limitations of the automated approach re- 
lying on domain-agnostic data deviation detection (see discussion in 

Section 4.3 ). In Section 5.3 we present a model-based approach, which, 
armed with the knowledge based on the previously seen data, correctly 
considers the above example to be non-anomalous, as it can be easily 
explained through the network interface mode change. 
5.2. Measurement system interference 

In many instances we encountered sudden short-lasting drops in the 
measured RTT. Fig. 8 shows RTT measurements within two hours from 
20:00 to 22:00 on one of the interfaces. The majority of measurements 
have values near 100 ms, but between 21:05 and 21:20 there is a con- 
centrated group of measurements with values around 80 ms. The shaded 
area marks an anomalous group which was identi/ed by our rolling 
mean detector. Many dispersed outliers can be seen in Fig. 8 , yet only 
a cluster with a su1cient number of outliers composes an anomaly. In 
such situations the detection using the computer tool is more accurate 
than just a visual observation of data. 

The signi/cance analysis for this case shows that the root cause of 
this anomaly is the event Scheduling.Task.Started ( Fig. 9 ), in- 
dicating that a start of an experiment on a node causes the anomaly. It 
seems that running an experiment on a node triggers a drop in measured 
RTT values. 

We hypothesise that the cause of such behaviour is the discontinuous 
reception (DRX) mode. DRX allows interfaces to save energy by going 
to a low power mode when no data is being transmitted [58] . However, 
DRX may lead to the RTT increase if the ping packets, before the trans- 
mission, have to wait for the interface to go back to a high power state. 
MONROE platform pings are sent out with 1 second inter-packet time, 
while operators often set the DRX kick-in threshold to around 100ms. 
Consequently, we expect that most of the MONROE ping packets, un- 
less an interface is already active because of an experiment, indeed have 
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Fig. 7. The image on top shows the increase of RTT measurements 
after 11:30 and the bottom image shows how the shift correlates with 
the change of parameter DeviceMode. The vast majority of RTT values 
before 11:30 are around 100 ms, so the relatively rare outliers at that 
time do not form an anomaly. 

Fig. 8. The anomaly detected via rolling mean method is marked with 
a shaded area. Occasional outliers are coloured grey, however, they 
do not necessarily compose an anomaly. 

Fig. 9. Signi/cance analysis determines the event Scheduling.Task.Started as the root cause of the anomaly shown in Fig. 8 . 
to wait for the interface to go to the high power state before the RTT 
measurements can be performed. To con/rm the existence of DRX we 
conducted our own ping experiments on the MONROE platform with 
variable inter-packet times. As expected, once ping packets were sent 
out with a higher frequency, the measured RTT dropped. 
5.3. Baseline model anomaly detection 

The rolling mean anomaly detection method is limited in its ability to 
adapt to well understood changes in the observed variable. For instance, 
in the case examined in Section 5.1 the jump in ping RTT measurements 
is not unusual, having in mind the device connection mode change. On 
the other hand, the baseline method for anomaly detection uses a pre- 
constructed quantile regression tree model to infer the expected value 
of the observed parameter in the light of the given context, i.e. values 

of selected remaining parameters. Consequently, the method does not 
mark as anomalous those measurements that can be explained with the 
pre-constructed model. This greatly reduces the number of false posi- 
tives, as an “anomaly ” can, in fact, be explained by the model. 

In Fig. 10 we show model-predicted values of ping RTT (black line) 
and the observed values (grey dots). The baseline model takes in to ac- 
count RSSI (Received Signal Strength Indicator), RSRQ (Reference Sig- 
nal Received Quality) and RSRP (Reference Signal Received Power) as 
independent variables. The prediction was created by quantile regres- 
sion forests algorithm, taking into account the top percentile of pre- 
dicted RTT values. Here the higher percentile indicates the better (i.e. 
smaller) RTT value. The outliers are the points distant from the baseline, 
meaning that their actual value highly disagrees with predicted value. 
In top image are two shaded anomaly regions formed by outliers high 
above the baseline. 
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Fig. 10. In the image on top the baseline is the predicted value of 
RTT with respect to parameters RSSI, RSRQ, and RSRP. The detector 
marked two anomalies. The /rst anomaly is resolved by using CID to 
construct the baseline as shown on bottom image. 

Fig. 11. Number of simultaneously occurring anomalies at all 
nodes connected to the same ISP. 

The /rst anomaly can be explained by further re/ning the model via 
retraining with the information on the expected RTT at di0erent cell 
IDs (CID) that a device connects to. This is clari/ed in bottom image 
in Fig. 10 , where the baseline was constructed by quantile regression 
forests algorithm that predicts RTT values with respect to CID. The three 
steps in the baseline function in the bottom image correspond to three 
di0erent cells that a device connected to. Therefore, the /rst anomaly 
constructed in top image is not considered an anomaly, if the CID pa- 
rameter is taken into account. Note that the /gure still does not ex- 
plain why RTT measurements di0er across di0erent CIDs – this requires 
further investigation that goes beyond the capabilities of the collected 
dataset. The second anomaly on the right side of both images in Fig. 10 , 
however, is not due to di0erent CID, so its root cause is the variation 
in parameters other than CID, RSSI, RSRQ, or RSRP. In this way the 
baseline anomaly detector not only uncovers anomalies that are impos- 
sible to detect visually, but can also explain anomalies by choosing the 
appropriate independent variables for the quantile regression forests al- 
gorithm. 
5.4. Network and system-wide anomalies 

We are further interested to determine whether a certain anomaly 
appears only at a particular network interface or, perhaps, at a number 
of interfaces connected to the same Internet service provider (ISP), or 
even beyond – in a number of devices across the measurement system. 
Such a case could indicate a systemic cause of the anomalies, similar to 
the real-world example of network-wide outage from the opening para- 
graph of this paper. In order to study such examples we enhanced our 
anomaly detection tool to support concurrent anomaly detection over 
a number of interfaces – essentially, it counts all anomalies happening 

at the same time at nodes connected to the same ISP. Fig. 11 shows 
the number of anomalies that occurred simultaneously at all nodes con- 
nected to ISP YOIGO on June 2018. A pattern of periodic spikes can be 
observed. This anomaly is due to an RTT drop caused by a MONROE 
platform experimenter running heavy experiments, similarly to the case 
examined in Section 5.2 . The large number of concurrent anomalies at 
spikes correspond to experiments scheduled to run on di0erent nodes of 
the same operator at the same time. 

We further examined potential network-wide anomalies. Through 
exploratory analysis at a few interfaces we noticed an anomaly caused 
by missing data. We then ran the concurrent anomaly detection tool 
for all the interfaces connected to a few di0erent ISPs. In Fig. 12 we 
show the cumulative anomaly count for two di0erent ISPs – Vodafone 
IT and YOIGO. We see that both operators exhibit simultaneous peaks 
that are more than two standard deviations above the mean anomaly 
count. The same peak is observable with other ISPs (not shown in the 
/gure). This indicates a system wide anomaly, likely caused by a glitch 
in the measurement system. 
6. Lessons learnt 

Continuous experimentation and revising has marked the process of 
RICERCANDO design and development. Di0erent prototypes have been 
developed, applied on the data, and evaluated, while at the same time 
the underlying measurement platform (MONROE) kept evolving, essen- 
tially making our goal a moving target. In this section we present some 
of the main lessons learnt through the development process. 

Need for appropriate data preprocessing and representation. At the time 
RICERCANDO started in June 2016 the MONROE platform was pro- 
ducing only a modest amount of (meta) data from a limited number of 
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Fig. 12. A system-wide anomaly due to the missing RTT data at ap- 
proximately 17:30 on January 1st 2018. 

nodes. However, over the course of the project the amount of collected 
data grew both because additional nodes were deployed, as well as be- 
cause of the additional information that was collected on each node 
(e.g. di0erent background experiments). MONROE data are by default 
stored in a Cassandra no-SQL database. This, however, severely limits 
large-scale data mining of the platform data. While no-SQL databases en- 
ables easy storage of key-value pairs, they are inappropriate for mining 
temporal data. Most of the collected data indeed have a temporal di- 
mension, thus time-based querying remains crucial. Another issue with 
no-SQL databases is that they often do not support data sampling. In 
MONROE, data are often collected with very /ne granularity (e.g. a 
ping every second), which makes (visual) inspection over a larger time 
period impractical – there are simply too many points to be shown on a 
graph. In the early stages of RICERCANDO we tried to adapt to the given 
database. However, in the next step, in order to enable e1cient tempo- 
ral large data analysis we devised a solution that relies on In2uxDB, a 
database speci/cally designed for time-series data querying. 

Joining tables over the common timestamp /eld is another challenge 
we have faced. Since timestamps are asynchronous, some tolerance on 
timestamp joining had to be accounted for. One solution was sampling 
data at rounded timestamps directly on the database, which we also 
used for visualisation. Another solution was provided by mergeasof , a 
function from the pandas module, which is similar to a left-join. Here, 
however, we use it to match on the nearest backward timestamp with a 
de/ned temporal tolerance between potentially merged instances. This 
helped us obtain more meaningful data points with fewer missing val- 
ues. Data preprocessing and representation is usually the most di1cult 
step, especially when dealing with large amounts of data. Our contri- 
bution, released in a form of processing scripts automates this step and 
streamlines further mining of MBB measurement data. 

Available data imposes explanation capacity limits. The interpretation 
of some encountered anomalies eluded us. One of these is depicted in 
Fig. 13 . A drop in mean RTT value occurs around 7:00, similar to the 
case of ping experiment running on the node ( Fig. 8 ). However, there 
were no scheduled experiments in the case in Fig. 13 , so they are ruled 
out as root-cause of the anomaly. Also, the 2-hour extent of this anomaly 
is longer than the 10-minute duration of an experiment. Furthermore, 
the anomaly appeared only at one interface of the same node. The avail- 
able data is simply insu1cient for explaining this anomaly. More infor- 
mation, perhaps from speci/c operational logs of this particular device, 
are needed. 

Effects of mobile broadband measurement system on the results. Uncov- 
ering the role of seemingly unrelated system design decisions on KPI 
values is one of the key observations we arrived to, as we tested RICER- 
CANDO on MONROE data. For instance, after signi/cant amounts of 
meta-data started arriving from MONROE nodes we discovered that RTT 

exhibits occasional spikes (going above 5X the usual value) interspersed 
with lost ping packets. Further analysis with our Rapid Exploration tools 
uncovered correlation between the observed anomaly and the node re- 
source utilisation spikes, indicating potential executions of CPU-heavy 
experiments. Consequently, our suggestion to include experiment exe- 
cution information in the metadata was implemented by the MONROE 
team, which later allowed us to pinpoint a particular experiment that 
resulted in the observed RTT behaviour. This is just one example where 
the measurement system, in this case through heavy resource usage by 
an experiment, resulted in anomalous measurements. The impact of the 
background tra1c on RTT measurements via DRX mode toggling is an- 
other example of the coupling of the measurement methodology and the 
recorded result, and is explained in Section 5 . 

We further revealed that geographical and Internet coordinates of 
the measurement equipment impacts the observed measurement val- 
ues. For instance, in our testbed, all nodes and all interfaces were send- 
ing ping probes to the same destination host IP of a server at Karlstad 
University, Sweden. We noticed that the nodes located in Norway and 
Sweden often had the mean RTT of the ping probes in the range be- 
tween 40 ms and 60 ms, while it was not uncommon for the nodes in 
countries far from the destination host server to encounter mean RTT 
close to 100 ms. This observation precludes a cross-node anomaly de- 
tection approach. Thus, rather than comparing the absolute di0erence 
of feature values among distant nodes, we concentrated on individual 
modelling and detection of relative changes in feature values recorded 
at a single node. 

MBB measurement data analysis requires multidisciplinary expertise. 
While we were already aware of the need for interdisciplinary exper- 
tise at the time we laid out plans for RICERCANDO, this need became 
even more evident as we progressed with development. First, MBB data 
is often analysed by computer networking domain experts. The need for 
expertise in data mining, in particular in data representation, statisti- 
cal analysis, and geographical data analysis proved crucial and the data 
mining part of our team got several enquiries to help with other projects’ 
data analysis issues. The two /elds, data mining and computer network- 
ing, are seldom directly collaborating, and it is our hope that RICER- 
CANDO results might facilitate this collaboration. Second, even when 
the general knowledge of networking is present, MBB measurement data 
mining requires in-depth knowledge of latest practices in broadband 
networks’ implementation. Such knowledge is often available only with 
a close collaboration with relevant industrial players. Speci/cally, our 
identi/cation of the DRX-related anomaly would not be possible with- 
out close collaboration with an industry professional experienced with 
LTE networks. Finally, visualisation of MBB measurement data, a cru- 
cial aspect of RICERCANDO, was based on lessons learnt from our data 
mining group’s previous e0orts in big data visualisation [59,60] . 
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Fig. 13. Anomaly occurs only at one interface (bottom image) of the 
same node. 

7. Conclusions 
In this paper we presented RICERCANDO – an MBB measurement 

data mining toolkit developed in close collaboration of networking and 
machine learning experts. RICERCANDO goes beyond the existing tools 
by allowing rapid iterative visual analysis and rigorous advanced data 
mining of MBB data. The developed approach is founded in intelligent 
time-series data storage, re-sampling, and merging, followed by interac- 
tive visualisation methods that enable quick focus on a particular mea- 
surements of interest. Machine learning modelling then enables auto- 
mated anomaly detection and root cause analysis via rigorous statistical 
methods. 

Compared to the existing attempts at MBB data analysis, such as [23–
25] , RICERCANDO does not provide merely descriptive statistics about 
the underlying data and an implementation of a pre-selected mining 
technique. Rather, through integration with a full-2edged data min- 
ing suite, Orange, RICERCANDO enables a vast array of data mining 
techniques. The bene/t of these techniques to not only identify, but 
also explain unusual network behaviour is evident in Section 5.2 where 
the signi/cance analysis is used to pinpoint the reason for the change 
in RTT values. RICERCANDO’s visualisation toolbox incorporates time- 
series and geo-based visualisation. The richness of options in RICER- 
CANDO’s visualisation toolbox is not on a par with the options provided 
by popular solutions, such as Grafana, yet, neither was the provision of 
such options one of our design goals. Instead, compared to visualisation- 
only solutions, RICERCANDO fully integrates with the data mining 
pipeline allowing interactive analysis through Pandas Dataframe-based 
communication. Finally, RICERCANDO can be compared with other 
MBB measurement data anomaly detection tools [29,30,32,36] . Most 
of these solutions focus on di0erent methods for identifying unusual 
behaviour on a single measurement node, either through statistical 
means [30] or through in-depth knowledge of the underlying net- 
working protocols [36] . In RICERCANDO we harness machine learn- 
ing modelling (e.g. quantile regression forest [56] ) and also provide 
a bird’s eye view of the whole dataset. This is particularly evident in 
Section 5.4 where we demonstrate how network-wide anomalies can be 
detected with RICERCANDO. 

RICERCANDO represents a holistic solution for network measure- 
ment analysis, yet, its modular design naturally supports framework ex- 
pansion and evolution. Augmenting the anomaly detection module with 
deep learning (DL) techniques, something that we are already work- 
ing on, demonstrates this expandability. Deep learning relies on large 
amounts of data in order to tune the models’ numerous parameters. 
With the constant stream of new values sampled at high frequency, MBB 
tra1c measurements are a great candidate for DL-based modelling. DL 
methods such as recurrent neural networks (RNNs) and deep Boltzmann 
machines (DBMs) have been used to model time series data and recog- 

nise anomalous events related to network security [61] . In our work, 
we will concentrate on the autoencoder (AE), a technique that relies on 
the dimensionality reduction to compress the representation of the usual 
network tra1c. When this AE is then fed with new measurements, any 
failure to compress and reconstruct the measurements through the AE 
indicates an anomaly [62] . Compared to the approaches we have im- 
plemented in Section 4.3 , the AE-based approach implicitly learns what 
the normal data should look like and is thus more likely to identify even 
previously unseen and unusual anomalies. 

In this we present a number of use cases demonstrating the usability 
of the framework for anomaly detection and explanation. Although the 
framework was designed primarily for the analysis of data collected in 
MONROE testbed, its usability is by no means restricted to a particu- 
lar dataset. We have already harnessed RICERCANDO for mining MBB 
measurement data gathered by the Slovenian Agency for Telecommuni- 
cations (AKOS) with the goal of inferring Internet neutrality violations 
in Slovenia. Moreover, although targeting MBB measurements, certain 
parts of our framework could also be used in other environments, es- 
pecially those characterised by heterogeneous measurements and mea- 
surements generated by a large number of probes. For instance, Internet 
Service Providers (ISP) usually manage large /xed access networks com- 
prised of diverse sub-networks. RICERCANDO’s geo-visualisation and 
anomaly detection tools can assist ISPs in rapidly detecting and localis- 
ing issues within their network. Similarly, in datacenter environments, 
where di0erent performance metrics (e.g. delay, throughput, packet 
loss, etc.) need to be tracked, RICERCANDO’s anomaly detection module 
could provide support in detecting and explaining performance prob- 
lems. 

RICERCANDO toolbox has a great potential to assist commercial tel- 
cos and government regulators with monitoring and understanding MBB 
tra1c, and we invite interested parties to download RICERCANDO 16 , 
adapt it to their needs, enrich it with additional functionalities, and fur- 
ther contribute towards improved network measurement data analysis 
and understanding. 
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