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ABSTRACT

Increasing reliance on mobile broadband (MBB) networks for communication, vehicle navigation, healthcare, and
other critical purposes calls for improved monitoring and troubleshooting. While recent advances in monitoring
with crowdsourced and network infrastructure-based methods allow us to tap into a number of performance
metrics from all layers of networking, huge swaths of data remain poorly explored due to a lack of tools suitable for
fast, interactive, and rigorous MBB data analysis. In this paper we present RICERCANDO, a solution that enables
rapid exploration of large heterogeneous MBB measurement data as well as the identification and explanation of
unusual patterns detected in such data. RICERCANDO consists of a preprocessing module ensuring that time-series
data is stored in the most appropriate form for mining, a rapid exploration module enabling iterative analysis
of time-series and geomobile data to detect and single-out anomalies, and the advanced mining module that lets
the analyst deduce root causes of observed anomalies. We implement and release RICERCANDO in open-source,

and validate its usability on case studies from a pan-European MBB measurement testbed.

1. Introduction

In December 2018, after a glitch involving software certificates, up
to 32 million O2 mobile network customers in the United Kingdom and
some 30 million SoftBank network customers in Japan were left with-
out access to data services for up to 24 hours [1]. Despite its relatively
short duration, the incident prompted public outrage and lead O2 to
compensate its customers and request “tens of millions of dollars” in
damages from Ericsson, a network equipment manufacturer whose soft-
ware caused the issue. The glitch was yet another demonstration of the
value of mobile connectivity and the need to rapidly detect and under-
stand the causes of mobile broadband network anomalies.

In the global connectivity landscape, mobile wireless communica-
tions play a particularly prominent role. The advent of mobile wireless
communication had a tremendous impact on numerous aspects of our
lives — from the way we navigate in unknown environments, communi-
cate on the move, over the way we pay our bills, to the way we track
our health and wellbeing. Underpinning and enabling all of this are mo-
bile broadband (MBB) networks. These networks have witnessed rapid
expansion recently — MBB subscriptions have grown more than ten-fold
in the last decade and have reached 5.3 billion globally in 2018 [2].
Network performance is improving drastically — a few Mbps download
speeds enabled by 3G technology at the break of the millennium appear
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ancient in comparison with a few Gbps delivered by today’s 5G tech-
nology. Finally, MBBs are becoming more affordable — worldwide MBB
access prices halved between 2013 and 2016 [3]. Together with the ex-
pansion of novel paradigms that depend on fast ubiquitous connectivity,
such as the Internet of Things (IoT), e-Health, smart cities and factories,
the above trends indicate that our reliance on MBB networks is to grow
even further.

MBB networks have penetrated into virtually all aspects of our ev-
eryday lives, became the inseparable part of today’s Internet, and en-
suring MBB networks’ reliability became a critical issue. Underpinning
the efforts to ensure reliability are network monitoring and data analysis
methods. Despite the advances in MBB performance measurement meth-
ods [4-8] the problem of the identification of performance anomalies
and, even more, the identification of root causes of network anomalies
remains unsolved. First, the sheer breadth of networks, both in terms
of the number of devices as well as their geographic spread, requires
consideration of multiple views of the same phenomenon before any
conclusions can be made. Yet, frequent fine-grain measurements, nec-
essary due to the networks’ dynamic behaviour, result in tremendous
amounts of data, rendering multifaceted/multigranular analysis a chal-
lenging task. Second, the networks’ multilayered construction calls for
a joint consideration of (meta) information from different levels, from
physical layer information on signal strengths, over transport layer re-
transmissions, to packet delay and jitter. However, these data are col-
lected by different probes and sensors, and providing a unified view
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of the data coming from different sources calls for novel intelligent
data consolidation strategies. Finally, current approaches to explaining
anomalies are rather ad-hoc and rely on networking experts’ intuition.
The increasing complexity of MBB networks prevents exhaustive search
for potential reasons for network malfunctioning, while statistical and
machine learning methods that could help pinpoint the causes of net-
work anomalies often remain outside the network administrators’ ex-
pertise and are challenging to apply within the existing network traffic
analysis and visualisation tools.

In this paper we tackle the problem of detecting and explaining MBB
network performance issues. We do that through RICERCANDO, a MBB
network data analysis framework developed in tight collaboration of
networking and data mining experts and designed to answer the above-
listed challenges. RICERCANDO enables multi-staged and flexible data
analysis. Our framework handles the first stage of the analysis through a
data representation scheme that merges data of different types and from
different sources, and adapts them to time series-based organisation suit-
able for querying with a different level of granularity. RICERCANDO
then enables scalable interactive visual analysis of big network measure-
ment data. Next, we devise anomaly detection methods that pinpoint
measurements where network performance indicators significantly devi-
ate from the expected values. Finally, through RICERCANDO’s machine
learning pipeline designed to help with the identification of key factors
that might have caused the observed anomalies, we introduce rigorous
statistical and machine learning methodology to MBB data analysis.

Specific contributions that RICERCANDO brings to the research area
of network management include:

Design of data merging and re-sampling method for agile data ma-
nipulation;

Implementation of adaptable and multi-dimensional temporal and
geographical visualisation of MBB measurement data;
Implementation of various anomaly detection methods suitable for
time-series data;

Inclusion of support for modern data mining techniques in network
data analysis.

Through a case study conduced on data collected through a pan-
European MBB network measurement testbed we demonstrate RICER-
CANDO'’s ability to detect and explain network anomalies. Finally, we
have released RICERCANDO as an open-source software and we invite
the community to join our efforts towards supporting rapid MBB net-
work measurement data analysis.

2. Related work
2.1. Monitoring MBB networks and measurement data management

A systematic method of monitoring is crucial for assessing the qual-
ity of service and troubleshooting in mobile broadband networks. Re-
cently, a wide range of approaches for MBB measurements have been
developed [9]. Approaches rely on either passive [5,8] or active mea-
surements [10], or on a hybrid measurement methodology that com-
bines both [4,11-13]. Passive measurements merely observe the existing
network traffic, while active measurements inject own packets in order
to evaluate performance metrics. The downside of active measurements
is that the measurement process may impact the actual network under
test.

In terms of the measurement point locations, certain approaches,
especially those initiated by national regulators, use dedicated moni-
toring equipment and a small number of controlled nodes, while oth-
ers rely on crowdsourced measurements conducted by a large num-
ber of often uncoordinated users [14]. The former have the benefit of
being unrestricted by the provider, of viewing the network as users,
and of covering wide geographical areas. OpenSignal, for instance, has
more than 100 million users across the globe [15]. However, crowd-
sourced measurements suffer from unreliability due to the lack of con-
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trol over the measurement equipment. A mobile app-based measure-
ment software may be run on different phone models, with different
implementations of the operating system, devices running different ap-
plications in parallel to the measurement app, different hardware issues
(e.g. bent antennas), and devices placed in various locations during mea-
surements (e.g. bag/pocket/hand), all of which may impact measure-
ment results [16,17]. Recent commercial and research initiatives hence
use crowdsourced-like approach with specialised equipment dedicated
to network measurements [18].

Irrespective of the measurement approach, MBB measurement data
is large-scale, temporal, heterogeneous, and shaped by a number of fac-
tors related to measurement methodology and equipment. Storing, pro-
cessing and reasoning upon such data is challenging, and a number of
solutions providing a structured approach to measurement data analy-
sis have been developed. Svoboda et al. demonstrated the importance of
using a well-defined methodology for packet delay measurement anal-
ysis in order to obtain meaningful interpretation of the results [11].
CoMo provides a structure for fast prototyping of network measurement
mining applications [19]. Mostly concerned with data storage and flow,
CoMo does not provide sufficient support for advanced analytics. Future
efforts were aimed at either increasing scalability, usability, or the num-
ber of supported options for data analysis. ENTRADA, for instance, con-
verts pcap log file to Apache Parquet and enables stream mining [20].
Similarly, DBStream was built to support rolling big data analysis [21].
The tool’s utility has been demonstrated on a few use cases, including
on the analysis of signalling and data transfer behaviour of different
mobile device types and different operating systems [22]. Designed by
networking experts, these systems usually provide solutions to network
measurement data handling, yet stop at the point where advanced data
mining is needed.

2.2. Mining MBB measurements

The complexity of MBB measurement data prompted networking re-
searchers to resort to ad-hoc and task-specific approaches to data min-
ing. Baltrunas et al. show that even simple correlation can help with
network reliability estimates [23]. In order to profile network coverage
in Norway, Lutu et al. perform hierarchical clustering of measurement
data collected via train-mounted probes [24]. Narayanan et al. propose
a feature distribution similarity graph to analyse spatio-temporal mobile
measurement data [25]. The authors show the utility of the approach in
a case study of profiling mobile users’ behaviour from call detail records.
ESkyPRO probe employs supervised classification to detect encrypted
Skype traffic [26]. With RICERCANDO we go a step further and de-
vise a rich framework focused on discovering general anomalies in MBB
measurement data and identifying their root causes using unsupervised
learning.

More advanced approaches try to automate the mining process, espe-
cially when it comes to anomaly detection, a key issue in network data
analysis. An overview of statistical methods for anomaly detection for
computer networking experts was presented by Callegari et al in [27].
A recent advancement in the area of automated detection is ADAM,
a system that detects anomalies by estimating Kullback-Leibler diver-
gence between the incoming and previously collected data [4]. Once
an anomaly is detected, the system performs factor analysis to identify
features exhibiting a similar abrupt change. RCA tool initially detects
change points by measuring the entropy of considered features [28].
It then considers the full statistical distribution of the traffic features
to characterise anomalies. Ricciato et al. suggested two approaches to
bottleneck detection, the first one based on statistical analysis of the
aggregate rate, and the second method based on TCP performance indi-
cators [29]. Coluccia et al. proposed an anomaly detection methodology
that identifies statistically significant deviations from the past behaviour
using Maximum Entropy modelling [30]. In another study, the authors
investigated distributions of multiple features to detect traffic anoma-
lies, indicating that the alarm correlation across features may augment
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the accuracy of the detector [31]. In [32] Li et al. describe a random
forest-based approach for anomaly detection in passive measurements.
While a clear intuition behind the rules of tree splitting provides a step
towards interpretable machine learning, the approach does not yield
a clear picture of which contextual parameter may have caused the
anomaly. Furthermore, unlike RICERCANDO, work presented in [32] is
not a full-fledged open-source software framework. Association rule
mining is another popular approach for identifying potential causes of
network malfunctions. Zargarian et al. present a method for mining asso-
ciation rules describing temporally and spatially correlated alarm events
from a network log [33]. Similarly to RICERCANDO, this work aims to
support networking experts by relieving them from the burden of big
data analysis. RICERCANDO, however, integrates with Orange [34], a
data mining suite that hosts a wide range of statistical tools, while also
including association rule mining. Moreover, RICERCANDO provides
tools for flexible data exploration enabling efficient visualisation of very
large measurement datasets. Ahmed et al. identified network providers,
locations, device types, and applications, or combinations of the above,
that lead to performance degradation in a large 3G network [35]. The
proposed method relies on iterative construction of regression models
to detect underperforming measurements and association rule mining in
order to single out the most prominent combinations. Intuitively, such
an approach focuses on the most apparent, recurring anomalies. Our
approach to anomaly detection (presented in Section 4) enables closer
inspection and detection of even short-lasting deviations from the ex-
pected performance, while also providing statistical explanations for the
discrepancy.

In summary, the existing work in the area of network measurement
analysis primarily focuses on either measurement data storage and man-
agement [19-21], or on the development of methods for processing
and profiling network measurements, and identifying anomalies in the
data [4,25,27,30]. Furthermore, these tools often stop short of provid-
ing advanced data mining capabilities and instead rely on a networking
expert’s presence in the loop?. Finally, despite interactive live data vi-
sualisation likely being the most efficient means of harnessing expert
knowledge [38], the presented tools seldom provide any advanced vi-
sualisation capabilities. Recognising the shortcomings of the above ap-
proaches as well as the limitations of existing visualisation tools (further
elaborated in Section 4.2), in RICERCANDO we implement a suite of
data processing, mining, and visualisation methods specifically tailored
for MBB measurement data analysis.

3. MBB Measurement data characteristics and RICERCANDO
analysis approach

A careful examination of the characteristics of MBB measurements
represents a cornerstone of RICERCANDO. As discussed in the previous
section, MBB measurements system can rely on passive or active mea-
surements, and can be performed through well-planned installations or
in an opportunistic crowd-sourced manner. Yet, certain properties char-
acterise MBB measurements irrespective of the measurement system im-
plementation.

We base our requirements analysis on the examination of the re-
lated work of MBB measurement mining (Section 2), but also on an in-
depth analysis of a state-of-the-art MBB measurement platform — MON-
ROE. MONROE is an open access hardware-based platform for indepen-
dent, multihomed, large-scale experimentation in MBB networks [18].
The MONROE project aims to create a pan-national reliable open-access
measurement platform for MBB networks®. The core of the system is a

2 This is explicitly evident in Siekkinen et al. TCP RCA approach [36], but also
through subtle issues related to data collection and interpretation process. For
instance, Michelinakis et al. show how peculiarities of packet scheduling at an
LTE base station impact capacity estimates inferred through measurements [37].

3 http://www.monroe-project.eu
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MONROE node, a custom-built device fitted with a Debian-based sin-
gle board computer and up to three LTE modems connected to differ-
ent providers. A centralised experiment scheduling system allows MON-
ROE users to post custom-made experiments to distributed nodes and
remotely collect measurement results. In addition, each node indepen-
dently executes certain background experiments, such as periodic RTT
measurements to MONROE servers. Finally, all the experiment data and
meta-data are collected in a MONROE database implemented in Cas-
sandra®. In 2018, the project operated 150 measurement nodes in four
European countries, with more than a half of the nodes being mounted
on buses, trains, and delivery trucks.

We have been conducting MONROE data analyses from the projects
inception in 2016 and have obtained a thorough understanding of the
characteristics of the measurement data. Similarly to other systems,
MONROE measurement data are characterised by:

+ Spatio-temporality: measurement nodes are geographically dis-
persed and often mobile;

Multi-modality: multiple aspects of network performance (RTT,
throughput, etc.) and meta-data (location, CPU load, etc.) are sam-
pled in parallel;

Heterogeneity of data exhibited through their varying granularity
and the lack of synchrony among different measured features;
Impact of the measurement methodology, hardware, and software
on the measurement results;

Lack of ground truth data.

A MBB data analysis tool has to cope with the above characteristics of
the data on the implementation level. On the higher level, however, the
tool has to enable comprehensive analysis, requirements of which have
been discussed among the research community before. For instance, in
2006 Ricciato indicated that network traffic analysis should include sta-
tistical analysis that goes beyond simple ad-hoc solutions, visualisation
and multidimensional exploration by networking experts and advanced
machine learning algorithms, and should allow the data to be pipelined
to other tools [39]. Recently, needs for additional higher-level infer-
ences from MBB measurements, such as Net neutrality violation detec-
tion, have also been voiced [40].

We design RICERCANDO to take into account the unique character-
istics of the MBB measurement data and directly answer the needs of
the research community. In RICERCANDO, we explicitly support inter-
active analysis and put the user in the loop. Moreover, our data storage
paradigm is adapted to support rapid visualisation and experimentation,
so that the expert knowledge can be harnessed in the best possible way.
Similarly, identifying a need for automated statistical analysis, we create
a machine learning pipeline that automatically detects and suggests ex-
planations for network anomalies. At the same time, the system’s visual
component maintains a close dialog with an expert enabling iterative in-
vestigation until the root cause of the issue is identified. Finally, recog-
nising the uniqueness of each measurement setup and varying goals of
those who analyse networks, we do not restrict RICERCANDO to par-
ticular mining techniques. Rather, we integrate it with the popular data
mining suite Orange®, allowing a wide range of current and future data
mining approaches.

4. RICERCANDO framework

RICERCANDO is structured around modules that together create a
data mining pipeline (Fig. 1 ). The framework assumes that the data is
stored in a key-value database, such as Cassandra® used by the MON-
ROE project. Data Preprocessing module (Section 4.1.1) transforms and
stores the data so that it can be quickly retrieved along the temporal di-
mension. Data Merging Interface (Section 4.1.2) enables different views

4 http://cassandra.apache.org
5 http://orange.biolab.si
6 http://cassandra.apache.org/
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Fig. 1. An overview of RICERCANDO framework. Boxes represent framework’s
modules, while arrows represent data movement. Darker (red) arrows indicate
that data is given in Python pandas format, suitable for interchange among dif-
ferent processing modules and tools. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

over the data. Rapid Exploration (Sections 4.2 and 4.3) module consists
of three submodules that allow interactive visualisation of time-series
data, geomobile data visualisation, and anomaly detection. Finally, Ad-
vanced Mining module (Section 4.4) interfaces with Orange data mining
suite and enables sophisticated machine learning and additional data
visualisation methods.

RICERCANDO implementation consists of a core ricercando
Python library’, data preprocessing scripts written in Bash and Python,
Jupyter Notebooks for visual analysis, and an add-on for Orange data
mining suite. All the code, together with the installation instructions is
available on GitHub®.

4.1. Data preprocessing and interfacing

4.1.1. Storage and re-sampling

MBB measurement data are often collected in relational or key-value
databases, as they enable easy and efficient storage [4,21,41]. However,
stored in such a manner, data are not suitable for rapid interactive explo-
ration. This is especially true for data with a temporal dimension, which
is common in MBB measurements — nodes move in space/time, RTTs are
gathered with periodic pings, anomalies and glitches impact subsequent
node behaviour. Key-value and traditional relational databases severely
limit the performance and the flexibility of writing queries over time-
series data. The volume of data and metadata gathered by MBB mea-
surements can be large. For instance, RTT measurements from MON-
ROE platform produce approximately 20 million entries per day. Data
storage needs to support data sampling to allow zooming in and out on
a selected chunk of data, or to support concurrent analysis of data com-
ing from multiple nodes. MBB data comes from various sources, such as
multiple nodes and multiple processes within a measurement node, and
are often not aligned along the common time axis. Consequently, merg-
ing the data in order to enable multidimensional analysis is challenging.

In RICERCANDO we devise data transformation and data storage
schemas to transform MBB data into minable representations. We use
temporal data abstraction and feature engineering guided by domain-
specific knowledge, and we construct scripts that implement various
data transformation tasks. To solve the temporal data mining problem

7 ricercando is also available via pip installer
8 http://github.com/ivek1312/ricercando/
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we transform the data to a time-series database® We store time-series
data with the minimal temporal granularity determined by the mea-
surement equipment time resolution (usually in millisecond range). We
also sample and store the data at a different granularity (e.g. 1 s, 1 min,
30 min, etc.). This is crucial for enabling interactive visualisation — if a
user requests to visualise a whole day of data, we fetch data of a coarser
temporal granularity; for examining particular anomalies, we zoom in
and provide fine-grain data. When sampling to low resolution the ag-
gregation of values within the period depends on the type of data. Thus,
with a few exceptions, for categorical variables we use mode function
that returns the most frequently observed value in the considered time
frame, while for numerical we use either min, max, or mean. The intu-
ition for different aggregating functions stems from the diverse nature of
the observed variables. For instance, RSSI values are often volatile even
between subsequent closely-spaced measurements, thus their mean is
usually considered [23]. On the other hand, for understanding network
congestion, the minimum of the achieved throughput may be more in-
formative than its mean. Finally, for the number of network users in a
time period and for certain network resources (e.g. radio access bearer
requests) the maximum value in a time slice may be the most appropri-
ate aggregation function for network troubleshooting purposes [43].

4.1.2. Merging data from different sources

Data mining and modelling is performed on datasets consisting of
instances, where each instance represents a data point in a multidimen-
sional feature space. For example, a measurement of the GPS location,
RTT, and the state of the measurement node at a point in time. As mea-
surement data come from various non-synchronised sources, we often
have to merge individual data streams along the same time axis. A sketch
of the merging process we implement in the Data Merging Interface
module is shown in Fig. 2 . For each of the time series (e.g. ping RTT,
GPS coordinates, etc.) we find an intersection with a selected moment on
the common time axis, and then apply a different strategy for inferring
the value at the requested moment in time.

Similarly to the need for different aggregation strategies elaborated
in Section 4.1.1, the need for a range of value inference strategies stems
from the diverse nature of the observed variables. For instance, a change
in a user’s location is limited by the physical properties, such as the
speed of movement. Thus, for GPS coordinates we perform interpola-
tion between the last measurement before and the first measurement
after the given moment in time. For RTT we take an average of the mea-
surements recorded in a time window preceding the current moment.
Note that the approach used with the GPS coordinates would not be ap-
propriate here — network malfunctions or connection switches (e.g. from
3G to LTE connection) often result in sudden RTT changes, which would
be masked by the simple interpolation approach. For features indicating
discrete events we keep track of the node’s state and assign the last ob-
served state to the instance we are inferring the value for. For example,
the last value of the indicator stating that an experiment is currently
running at the node would be extrapolated to the currently considered
time. Finally, RICERCANDO allows further tuning of the merging pro-
cess, for example, by specifying the minimum freshness value of the data
before it is included in a data instance - e.g. if no download speed mea-
surements were taken in the last 60 s, the instance will contain a null
value for download speed. This can be further extended to “tighten” the
reliability of the inferred values — e.g. the larger the difference between
the two GPS points we interpolate from, the less confident we become
about the inferred value and we might consider replacing it with a null
value. While we steer away from a fully automated merging and require

9 We use InfluxDB (www.influxdata.com) in our implementation; compared
to popular alternatives, such as Elasticsearch, InfluxDB delivers 6.1x greater
write throughput, uses 2.5x less disk space, and delivered 8.2x faster response
times [42]; furthermore, InfluxDB supports time-series signal analysis out of the
box. Nevertheless, RICERCANDO is not dependent on InfluxDB and alternative
time-series databases can also be used.
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Fig. 2. Data merging along the common time axis in
RICERCANDO.
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input from a networking expert, this guarantees that the further analysis
is done on truly meaningful data.'?

4.2. Interactive visualisation of big MBB measurements data

Iterative examination of visualised data is crucial for network data
mining [39]. These data, however, are multidimensional, temporal, and
geo-mobile, and very large, exemplifying the common “three Vs” chal-
lenges in big data visualisation: volume, variety, and velocity [47]. Con-
ventional data visualisation tools that come with data mining pack-
ages, such as WEKA or Orange, struggle with MBB data, moreover,
the amount of data might even overburden specialised tools, such as
Tableau [48]. Interactive Web-based visualisation frameworks, such as
Bokeh!!, Holoviews'? and Plotly'®, strive to tackle the above chal-
lenges, yet, they remain limited by the Web technology — it can handle
only a limited amount of points before the Web browser chokes [49].
Grafana'# represents a powerful and popular tool for data visualisation,
yet, as in our framework data visualisation remains highly interactive
and tightly connected with the data modelling pipeline, it requires a be-
spoke solution. For instance, our time-series and geo-visualisation tools
perform adaptive sampling depending on the zoom level, interact with
heterogeneous data merging and allow the selected data to be quickly
funnelled into a Python Pandas Dataframe and forwarded to Orange for
further inspection. Using an off-the-shelf solution for data visualisation
would preclude such a flexible connection among different parts of our
framework.

To visualise a large number of data points the existing solutions
rely on methods, such as decimation and data-shading. Decimation re-
samples data in advance and displays only a predefined maximum num-
ber of data points. Data-shading plots rasterised images rendered to
show the amount of detail appropriate for the current zoom level. While
generally applicable, these methods are not suitable for interactive MBB
data analysis — decimation omits random points, which may impact ex-
perts’ interpretation of the observed measurements, and data-shading
prevents interactivity since rasterised image disallow further data selec-
tion and forwarding to a machine learning pipeline. Finally, neither of
the techniques tackles the problem of volume — how to automatically
prepare the right amount of data for visualisation at query time.

10 The inclusion of domain experts early on in the data preprocessing stage is
often emphasised as a crucial step in modern data mining [44-46].

11 https://bokeh.org/

12 http://holoviews.org/

13 https://plot.ly/

14 https://grafana.com/

RICERCANDO’s original approach to data preprocessing (see
Section 4.1) is naturally suited for tackling the “three Vs” chal-
lenge. The volume challenge is tackled by storing and sampling the
data at different granularity, the variety issue is tackled with dif-
ferent merging/preprocessing techniques, and velocity is tackled with
speed-optimised adaptable granularity queries. Based on the above ap-
proaches, we develop two modules for rapid interactive visualisation
of MBB measurement data — one for time-series visualisation, the other
for geographical data visualisation, both implemented in the form of
Jupyter Notebooks. We opted for this environment, as opposed to cus-
tom stand-alone programs, as it allows quick prototyping and tweaking
according to specific user needs and given datasets.

Time-Series Visualisation module for a selected network probe
(node) and a time period plots a target key performance indicator (KPI)
on a separate timeline for each of the node’s interfaces. An additional di-
mension can be represented through the colouring of each of the points
(Fig. 3 ). User is able to choose the preferred colour palette from var-
ious options. Finally, the tool enables hovering over a point, showing
values of all the other dimensions associated with the same data point.
A key property of the Time-Series Visualisation module is its adaptabil-
ity to the amount of to-be-shown data. It relies on getdf function from
ricercando Python module, which, for the given zoom level retrieves
data from the database with an appropriate resolution, in order to pre-
serve the interactivity of the notebook. For example, viewing a whole
week worth of measurements might use data aggregated on 30 min in-
tervals, whereas zooming into a particular RTT anomaly might fetch and
show data with 10 ms granularity.

Geographical Data Visualisation module (Fig. 4 ) supports visu-
alisation of a selected KPI of geo-referenced data from a measurement
node on a separate map for each of the node’s interfaces, for the given
time period. Such visualisation is a key tool for the identification of is-
sues affecting particular geographic regions. Similarly to the Time Series
Visualisation module, hovering over a point shows values of all the other
dimensions associated with the same data point. Geographical Data Vi-
sualisation module, too, relies on getdf function for adaptive data re-
trieval, so that the retrieved data resolution is adjusted to the current
map zoom level.

RICERCANDO modules, such as Time Series Visualisation, Geograph-
ical Data Visualisation, Anomaly Detection, and Advanced Mining mod-
ule are designed to fit into each other just like LEGO® bricks and al-
low flexible data analysis workflows. To support interoperability among
modules we rely on Python pandas DataFrame (dark/red lines in Fig. 1).
Indeed, each of the Jupyter notebook-based modules allows data selec-
tion (e.g. selecting a range of data points on a map) and storage (as a
DataFrame on local storage), and retrieval from another module, e.g. in
order to perform advanced mining in Orange.


https://bokeh.org/
http://holoviews.org/
https://plot.ly/
https://grafana.com/
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Fig. 3. Time-series visualisation in RICERCANDO. Y-axis represents RTT measured on each of the two interfaces of the same node, while colouring corresponds
to the cell id (CID). Vertical lines represent MONROE experiment start/stop/loading moments. Plots below each of the RTT series show the frequency used by the
interface. Figure shows node 562 with two interfaces. RTT in interface on top varied from 60 to 100 ms until 5h, while switching between different cell ids. From
5h to 20h the cell id does not change and also RTT stays almost constant at 60 ms. The operating frequency from 4h to 21h is 1800 MHz.
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Fig. 4. Geographical visualisation of RTT measured on two interfaces of the mobile node travelling through Oslo. The shades of the trace correspond to different
values of RTT. On the right image a selected region contains RTT data stored for further analysis.

4.3. Anomaly detection tool

Anomalies occur frequently in computer network measurement data
and can be caused by anything from misconfigurations to cyber at-
tacks [50,51]. Anomaly detection plays a central role in RICERCANDO.
We implement a Jupyter Notebook that enables automatic detection and
visual inspection of anomalies in the data (Fig. 8). Numerous detec-
tion methods relying on a range of techniques, from mining association
rules [52], to modelling with Markov processes [53], have been pro-
posed for anomaly inference (see [54] for a survey of anomaly detection
approaches).

What is an anomaly? Without any knowledge of the underlying
system that generates the data, an anomaly detection system aims to
find “sufficiently different” measurements in a stream of data. Alterna-
tively, the data are labelled as “anomalous” if they do not follow the
patterns that a domain expert expects, based on her mental model of
how the MBB network “should” behave. While the first definition leaves
us struggling to find parameter values that would define “sufficiently
different” behaviour in automated anomaly detection systems (Romirer
and Ricciato have pondered on this question in the context of delay mea-
surements in 3G networks [55]), the second definition is limited by the
expert’s (mis)understanding of the network phenomena. Thus, in RICER-
CANDO we aim to judiciously guide an expert in reasoning about the
observed deviations. We implement methods for automated labelling of
“sufficiently different” measurements, while at the same time the meth-
ods’ parameters allow the experts, guided by an immediate visual feed-
back, to adapt the labelling to the currently considered situation. Fur-
ther, we “encode” the underlying knowledge about the system to label
as anomalous only those values that do not conform to a pre-constructed
model, therefore, moving the automation closer to the “expert” side of
the spectrum.

An anomaly is usually a previously unseen event and without sub-
stantial involvement of networking experts we cannot expect that a la-
belled training data set is available. Thus, lacking the ground truth, we
use unsupervised machine learning for anomaly detection. Certain MBB
measurements are clearly anomalous, characterised by rapid changes
like sudden very high RTT. Consequently, our first approach to anomaly
detection relies on a simple comparison of a signal with the previously

observed data. Yet, observed changes in MBB measurements need not be
anomalies, but reflections of natural changes in the underlying connec-
tivity (e.g. a handoff from 4G to 3G). Thus, our second more advanced
approach to anomaly detection relies on detecting deviations from the
expected measurement values, where these values are predicted by a
model that takes the underlying connectivity context into account. Fi-
nally, we augment our toolbox with an anomaly detection method that
is founded in a statistical comparison between two sets of measured
values.

In summary, RICERCANDO implements three anomaly detection
methods:

* Rolling mean - a method based on a rolling window that compares
data in the current window with a long-term mean of the measure-
ments. Data points that are a number of standard deviations away
from the rolling mean are regarded as outliers and a large enough
cluster of outliers is identified as an anomalous region. The rolling
analysis recognises fast and large changes of the values in a time
series. The speed of change is related to the size of a rolling win-
dow, which in turn is related to the amount of data explored by the
window. The number of standard deviations from the rolling mean
determines the sensitivity of the method to the observed change. Dif-
ferent parameters for anomaly detection, including the rolling win-
dow size and the standard deviations threshold, can be set by the
user. A networking expert can identify and fix the parameters for
different applications, thus enabling subsequent automatic anomaly
detection. With this method abrupt falls or rises (spikes) are treated
as anomalies, while, for example, a gradually rising RTT due to in-
creased network congestion would not be considered an anomaly.

Baseline comparison - a detector that compares the actual value
of a data point with the value predicted based on a pre-constructed
model. Such a method can, for example, learn the expected RTT for
a node using 4G technology experiencing a certain RSRQ in a cer-
tain area, and correctly attribute changes in RTT to either contex-
tual changes - like fallback from 4G to 3G - or to an unexplained
anomaly. Due to a large parameter space the observed data point
might come with a previously unseen context. To cope with such a
case, RICERCANDO builds the model using the quantile regression
forest technique [56] that predicts the dependent variable value even
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Fig. 5. Anomaly detector determined two different anomaly re-

gions (higher RTT values shaded grey) within the same data by
using distinct values of detection parameters in each case.
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if the context has not been observed before. Furthermore, we build a
model by using top N (by default 10) percent of the best performing
measurements from a given context. This ensures that well perform-
ing points are not misclassified as anomalies.

Distribution comparison'® — a detector that empirically infers dis-
tributions of the same variable in different segments of the data us-
ing kernel density estimation technique, and then compares the dis-
tributions using Kullback-Leibler divergence. Significant difference
between the previous and currently observed data distributions may
indicate an anomaly.

.

The developed notebook allows the user to select a measurement
node, a target KPI, and a time span in which the data is analysed. Ad-
ditionally, the user can set a number of parameters that control the op-
eration of the tool, including the sensitivity of anomaly detection. In
the first step, the developed tool automatically detects the anomalies in
measured data based on one of the above detection methods selected.
Besides these methods, the tool supports a simple integration of new
anomaly detectors. After one or more anomalies are detected, the tool
enables informative visualisation of regular and anomalous data. Based
on visual results a domain expert may adjust initial parameters to con-
trol the shape of the highlighted anomalies. This is demonstrated in
Fig. 5, where tuning of parameters produced two different anomaly
regions within the same data. Descriptive visualisation also allows the
experts to quickly find important aspects in the data. The data can then
be saved so that anomalous regions are automatically labelled for fur-
ther processing.

An important feature of the anomaly detection tool is concurrent
anomaly detection. MBB data often contains measurements from a large
number of nodes connected to a few different network providers, and de-
tecting anomalies that simultaneously appear at all interfaces connected
to the same provider is crucial for identifying whether the anomaly is
isolated or affecting the whole network. In RICERCANDO we implement
an optional concurrent analysis that takes into account all probes con-
nected to a particular network. The output of the tool is a time diagram
showing a cumulative count of anomalies over time for the selected net-
work — moments when such a count is high indicate network-wide issues
(see Section 5.4).

In all developed anomaly detection methods user can set various
parameters. Identifying the relevant set of parameter values is indeed a

15 This method is not suitable for streaming data analysis, therefore, we im-
plement it in the Anomaly Detection module, but do not expose it through our
GUL

complex task and must be done carefully by experts in order to enable
automatic anomaly detection.

4.4. Advanced mining

Identifying root causes of the observed MBB behaviour is the final
goal of data analysis. The existing tools for MBB data analysis were
mostly developed by computer networking experts and support data pre-
processing, visualisation, and simple statistical analysis [4,19,23,36].
RICERCANDO is developed in close collaboration with highly experi-
enced data mining experts — one of the RICERCANDO authors is leading
data mining research lab with more than 20 years of practical data min-
ing experience in a range of domains. This synergy enables us to support
advanced data mining for root cause analysis in RICERCANDO.

A key enabler of advanced mining in RICERCANDO is Orange — a
popular GUI-based data mining toolbox where data processing work-
flows are constructed through visual programming by combing widgets.
A widget is a computational unit with interactive visual interface that
performs a particular function related to data preprocessing, visualisa-
tion, and modelling. Orange supports a range of machine learning meth-
ods, from unsupervised (clustering), to supervised (classifiers, regres-
sions), from basic (e.g. naive Bayesian) to more complex state-of-the-art
ones (e.g. neural networks). Fig. 6 depicts MONROE measurement data
analysis using an Orange workflow of widgets.

Orange is limited in the amount of data it can handle. Thus, we
use it as the last step of RICERCANDO analysis. We develop an Orange
widget to import the data from RICERCANDO rapid exploration note-
books. Users can, thus, perform preliminary visualisation and analysis
of a larger dataset in a Jupyter Notebook before selecting a particularly
interesting dataset and analysing it further in Orange. In addition, we
develop a widget for direct access to MONROE data stored in a time-
series database.

One of the main questions a network analyst is interested in is which
factors may cause a particular anomaly? [57]. To answer this, we de-
velop an Orange widget that identifies Significant Groups of features that
differentiate between regular and anomalous data. Note that a dataset
containing labelled regular and anomalous data is automatically cre-
ated by our Anomaly Detection module and imported to Orange via the
iPython Connector widget. The main test implemented within the Sig-
nificant Groups widget is the hypergeometric test. The test traverses all
subsets of features and calculates the enrichment each subset brings to
the anomalous data region. Sorting the subsets according to the enrich-
ment, while also taking into account their significance levels, gives us a
list of most probable causes for the detected anomaly. In addition, the
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Fig. 6. MONROE data analysis in Orange. A workflow composed of Orange widgets is shown in the upper left corner. Each widget performs a specific function. A
window corresponding to Scatter Plot Before widget (lower left) shows anomalous RTT behaviour. Scatter Plot After window (middle right) shows distinct RTT dips.
Feature Constructor widget is used for splitting the data into groups with low and normal RTT. Finally, Significant Groups widget performs a hypergeometric test and
identifies Scheduling.Task.Started event as a feature value that discerns between the two groups, indicating that a background experiment impacts the

observed RTT.

widget supports other comparison tests that may help with root cause
analysis, such as the permutation test and the t-test.

5. Case studies

The MONROE project provides large amount of data of various MBB
network parameters. Irregular patterns in the data can quickly be spot-
ted using the visualisations. However, to precisely define visually ob-
served anomalies and to discover hidden anomalies that are not easy to
illustrate, we developed an automatic anomaly detector. Beside identifi-
cation of anomalies the computer tool also facilitates the determination
of their root causes. Among multiple occurrences of anomalies that we
found, selected case studies focused on RTT data are thoroughly de-
scribed in this section.

5.1. Connection mode change

The first anomaly we identified by using our automatic detection
tool’s rolling mean method is depicted in Fig. 7 (top). The figure shows
that on the given measurement node after 11:30 the RTT mean changes
drastically from below 100 ms to approximately 250 ms. The anomaly
detector automatically recognised the shift and marked it as an anomaly
(grey region). Running the hypergeometric test and calculating the en-
richment each feature subset brings to the anomalous data region, we
found out that a change in the device’s connectivity mode is the cul-
prit. A switch from LTE to 3G perfectly coincides with the anomaly, as
shown in Fig. 7 depicting the RTT and the interface’s mode on the com-
mon time axis. Note that by automating the significant feature search
we remove the need for comprehensive visual analysis.

This example shows the limitations of the automated approach re-
lying on domain-agnostic data deviation detection (see discussion in

Section 4.3). In Section 5.3 we present a model-based approach, which,
armed with the knowledge based on the previously seen data, correctly
considers the above example to be non-anomalous, as it can be easily
explained through the network interface mode change.

5.2. Measurement system interference

In many instances we encountered sudden short-lasting drops in the
measured RTT. Fig. 8 shows RTT measurements within two hours from
20:00 to 22:00 on one of the interfaces. The majority of measurements
have values near 100 ms, but between 21:05 and 21:20 there is a con-
centrated group of measurements with values around 80 ms. The shaded
area marks an anomalous group which was identified by our rolling
mean detector. Many dispersed outliers can be seen in Fig. 8, yet only
a cluster with a sufficient number of outliers composes an anomaly. In
such situations the detection using the computer tool is more accurate
than just a visual observation of data.

The significance analysis for this case shows that the root cause of
this anomaly is the event Scheduling.Task.Started (Fig. 9), in-
dicating that a start of an experiment on a node causes the anomaly. It
seems that running an experiment on a node triggers a drop in measured
RTT values.

We hypothesise that the cause of such behaviour is the discontinuous
reception (DRX) mode. DRX allows interfaces to save energy by going
to a low power mode when no data is being transmitted [58]. However,
DRX may lead to the RTT increase if the ping packets, before the trans-
mission, have to wait for the interface to go back to a high power state.
MONROE platform pings are sent out with 1 second inter-packet time,
while operators often set the DRX kick-in threshold to around 100ms.
Consequently, we expect that most of the MONROE ping packets, un-
less an interface is already active because of an experiment, indeed have
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Fig. 7. The image on top shows the increase of RTT measurements

after 11:30 and the bottom image shows how the shift correlates with
the change of parameter DeviceMode. The vast majority of RTT values
before 11:30 are around 100 ms, so the relatively rare outliers at that
time do not form an anomaly.

Fig. 8. The anomaly detected via rolling mean method is marked with

a shaded area. Occasional outliers are coloured grey, however, they
do not necessarily compose an anomaly.
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Fig. 9. Significance analysis determines the event Scheduling.Task.Started as the root cause of the anomaly shown in Fig. 8.

to wait for the interface to go to the high power state before the RTT
measurements can be performed. To confirm the existence of DRX we
conducted our own ping experiments on the MONROE platform with
variable inter-packet times. As expected, once ping packets were sent
out with a higher frequency, the measured RTT dropped.

5.3. Baseline model anomaly detection

The rolling mean anomaly detection method is limited in its ability to
adapt to well understood changes in the observed variable. For instance,
in the case examined in Section 5.1 the jump in ping RTT measurements
is not unusual, having in mind the device connection mode change. On
the other hand, the baseline method for anomaly detection uses a pre-
constructed quantile regression tree model to infer the expected value
of the observed parameter in the light of the given context, i.e. values

of selected remaining parameters. Consequently, the method does not
mark as anomalous those measurements that can be explained with the
pre-constructed model. This greatly reduces the number of false posi-
tives, as an “anomaly” can, in fact, be explained by the model.

In Fig. 10 we show model-predicted values of ping RTT (black line)
and the observed values (grey dots). The baseline model takes in to ac-
count RSSI (Received Signal Strength Indicator), RSRQ (Reference Sig-
nal Received Quality) and RSRP (Reference Signal Received Power) as
independent variables. The prediction was created by quantile regres-
sion forests algorithm, taking into account the top percentile of pre-
dicted RTT values. Here the higher percentile indicates the better (i.e.
smaller) RTT value. The outliers are the points distant from the baseline,
meaning that their actual value highly disagrees with predicted value.
In top image are two shaded anomaly regions formed by outliers high
above the baseline.
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Fig. 10. In the image on top the baseline is the predicted value of
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The first anomaly can be explained by further refining the model via
retraining with the information on the expected RTT at different cell
IDs (CID) that a device connects to. This is clarified in bottom image
in Fig. 10, where the baseline was constructed by quantile regression
forests algorithm that predicts RTT values with respect to CID. The three
steps in the baseline function in the bottom image correspond to three
different cells that a device connected to. Therefore, the first anomaly
constructed in top image is not considered an anomaly, if the CID pa-
rameter is taken into account. Note that the figure still does not ex-
plain why RTT measurements differ across different CIDs — this requires
further investigation that goes beyond the capabilities of the collected
dataset. The second anomaly on the right side of both images in Fig. 10,
however, is not due to different CID, so its root cause is the variation
in parameters other than CID, RSSI, RSRQ, or RSRP. In this way the
baseline anomaly detector not only uncovers anomalies that are impos-
sible to detect visually, but can also explain anomalies by choosing the
appropriate independent variables for the quantile regression forests al-
gorithm.

5.4. Network and system-wide anomalies

We are further interested to determine whether a certain anomaly
appears only at a particular network interface or, perhaps, at a number
of interfaces connected to the same Internet service provider (ISP), or
even beyond - in a number of devices across the measurement system.
Such a case could indicate a systemic cause of the anomalies, similar to
the real-world example of network-wide outage from the opening para-
graph of this paper. In order to study such examples we enhanced our
anomaly detection tool to support concurrent anomaly detection over
a number of interfaces — essentially, it counts all anomalies happening

at the same time at nodes connected to the same ISP. Fig. 11 shows
the number of anomalies that occurred simultaneously at all nodes con-
nected to ISP YOIGO on June 2018. A pattern of periodic spikes can be
observed. This anomaly is due to an RTT drop caused by a MONROE
platform experimenter running heavy experiments, similarly to the case
examined in Section 5.2. The large number of concurrent anomalies at
spikes correspond to experiments scheduled to run on different nodes of
the same operator at the same time.

We further examined potential network-wide anomalies. Through
exploratory analysis at a few interfaces we noticed an anomaly caused
by missing data. We then ran the concurrent anomaly detection tool
for all the interfaces connected to a few different ISPs. In Fig. 12 we
show the cumulative anomaly count for two different ISPs — Vodafone
IT and YOIGO. We see that both operators exhibit simultaneous peaks
that are more than two standard deviations above the mean anomaly
count. The same peak is observable with other ISPs (not shown in the
figure). This indicates a system wide anomaly, likely caused by a glitch
in the measurement system.

6. Lessons learnt

Continuous experimentation and revising has marked the process of
RICERCANDO design and development. Different prototypes have been
developed, applied on the data, and evaluated, while at the same time
the underlying measurement platform (MONROE) kept evolving, essen-
tially making our goal a moving target. In this section we present some
of the main lessons learnt through the development process.

Need for appropriate data preprocessing and representation. At the time
RICERCANDO started in June 2016 the MONROE platform was pro-
ducing only a modest amount of (meta) data from a limited number of
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Fig. 12. A system-wide anomaly due to the missing RTT data at ap-

proximately 17:30 on January 1st 2018.
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nodes. However, over the course of the project the amount of collected
data grew both because additional nodes were deployed, as well as be-
cause of the additional information that was collected on each node
(e.g. different background experiments). MONROE data are by default
stored in a Cassandra no-SQL database. This, however, severely limits
large-scale data mining of the platform data. While no-SQL databases en-
ables easy storage of key-value pairs, they are inappropriate for mining
temporal data. Most of the collected data indeed have a temporal di-
mension, thus time-based querying remains crucial. Another issue with
no-SQL databases is that they often do not support data sampling. In
MONROE, data are often collected with very fine granularity (e.g. a
ping every second), which makes (visual) inspection over a larger time
period impractical — there are simply too many points to be shown on a
graph. In the early stages of RICERCANDO we tried to adapt to the given
database. However, in the next step, in order to enable efficient tempo-
ral large data analysis we devised a solution that relies on InfluxDB, a
database specifically designed for time-series data querying.

Joining tables over the common timestamp field is another challenge
we have faced. Since timestamps are asynchronous, some tolerance on
timestamp joining had to be accounted for. One solution was sampling
data at rounded timestamps directly on the database, which we also
used for visualisation. Another solution was provided by mergeasof, a
function from the pandas module, which is similar to a left-join. Here,
however, we use it to match on the nearest backward timestamp with a
defined temporal tolerance between potentially merged instances. This
helped us obtain more meaningful data points with fewer missing val-
ues. Data preprocessing and representation is usually the most difficult
step, especially when dealing with large amounts of data. Our contri-
bution, released in a form of processing scripts automates this step and
streamlines further mining of MBB measurement data.

Available data imposes explanation capacity limits. The interpretation
of some encountered anomalies eluded us. One of these is depicted in
Fig. 13 . A drop in mean RTT value occurs around 7:00, similar to the
case of ping experiment running on the node (Fig. 8). However, there
were no scheduled experiments in the case in Fig. 13, so they are ruled
out as root-cause of the anomaly. Also, the 2-hour extent of this anomaly
is longer than the 10-minute duration of an experiment. Furthermore,
the anomaly appeared only at one interface of the same node. The avail-
able data is simply insufficient for explaining this anomaly. More infor-
mation, perhaps from specific operational logs of this particular device,
are needed.

Effects of mobile broadband measurement system on the results. Uncov-
ering the role of seemingly unrelated system design decisions on KPI
values is one of the key observations we arrived to, as we tested RICER-
CANDO on MONROE data. For instance, after significant amounts of
meta-data started arriving from MONROE nodes we discovered that RTT

exhibits occasional spikes (going above 5X the usual value) interspersed
with lost ping packets. Further analysis with our Rapid Exploration tools
uncovered correlation between the observed anomaly and the node re-
source utilisation spikes, indicating potential executions of CPU-heavy
experiments. Consequently, our suggestion to include experiment exe-
cution information in the metadata was implemented by the MONROE
team, which later allowed us to pinpoint a particular experiment that
resulted in the observed RTT behaviour. This is just one example where
the measurement system, in this case through heavy resource usage by
an experiment, resulted in anomalous measurements. The impact of the
background traffic on RTT measurements via DRX mode toggling is an-
other example of the coupling of the measurement methodology and the
recorded result, and is explained in Section 5.

We further revealed that geographical and Internet coordinates of
the measurement equipment impacts the observed measurement val-
ues. For instance, in our testbed, all nodes and all interfaces were send-
ing ping probes to the same destination host IP of a server at Karlstad
University, Sweden. We noticed that the nodes located in Norway and
Sweden often had the mean RTT of the ping probes in the range be-
tween 40 ms and 60 ms, while it was not uncommon for the nodes in
countries far from the destination host server to encounter mean RTT
close to 100 ms. This observation precludes a cross-node anomaly de-
tection approach. Thus, rather than comparing the absolute difference
of feature values among distant nodes, we concentrated on individual
modelling and detection of relative changes in feature values recorded
at a single node.

MBB measurement data analysis requires multidisciplinary expertise.
While we were already aware of the need for interdisciplinary exper-
tise at the time we laid out plans for RICERCANDO, this need became
even more evident as we progressed with development. First, MBB data
is often analysed by computer networking domain experts. The need for
expertise in data mining, in particular in data representation, statisti-
cal analysis, and geographical data analysis proved crucial and the data
mining part of our team got several enquiries to help with other projects’
data analysis issues. The two fields, data mining and computer network-
ing, are seldom directly collaborating, and it is our hope that RICER-
CANDO results might facilitate this collaboration. Second, even when
the general knowledge of networking is present, MBB measurement data
mining requires in-depth knowledge of latest practices in broadband
networks’ implementation. Such knowledge is often available only with
a close collaboration with relevant industrial players. Specifically, our
identification of the DRX-related anomaly would not be possible with-
out close collaboration with an industry professional experienced with
LTE networks. Finally, visualisation of MBB measurement data, a cru-
cial aspect of RICERCANDO, was based on lessons learnt from our data
mining group’s previous efforts in big data visualisation [59,60].
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Fig. 13. Anomaly occurs only at one interface (bottom image) of the

same node.
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7. Conclusions

In this paper we presented RICERCANDO - an MBB measurement
data mining toolkit developed in close collaboration of networking and
machine learning experts. RICERCANDO goes beyond the existing tools
by allowing rapid iterative visual analysis and rigorous advanced data
mining of MBB data. The developed approach is founded in intelligent
time-series data storage, re-sampling, and merging, followed by interac-
tive visualisation methods that enable quick focus on a particular mea-
surements of interest. Machine learning modelling then enables auto-
mated anomaly detection and root cause analysis via rigorous statistical
methods.

Compared to the existing attempts at MBB data analysis, such as [23—
25], RICERCANDO does not provide merely descriptive statistics about
the underlying data and an implementation of a pre-selected mining
technique. Rather, through integration with a full-fledged data min-
ing suite, Orange, RICERCANDO enables a vast array of data mining
techniques. The benefit of these techniques to not only identify, but
also explain unusual network behaviour is evident in Section 5.2 where
the significance analysis is used to pinpoint the reason for the change
in RTT values. RICERCANDO’s visualisation toolbox incorporates time-
series and geo-based visualisation. The richness of options in RICER-
CANDO'’s visualisation toolbox is not on a par with the options provided
by popular solutions, such as Grafana, yet, neither was the provision of
such options one of our design goals. Instead, compared to visualisation-
only solutions, RICERCANDO fully integrates with the data mining
pipeline allowing interactive analysis through Pandas Dataframe-based
communication. Finally, RICERCANDO can be compared with other
MBB measurement data anomaly detection tools [29,30,32,36]. Most
of these solutions focus on different methods for identifying unusual
behaviour on a single measurement node, either through statistical
means [30] or through in-depth knowledge of the underlying net-
working protocols [36]. In RICERCANDO we harness machine learn-
ing modelling (e.g. quantile regression forest [56]) and also provide
a bird’s eye view of the whole dataset. This is particularly evident in
Section 5.4 where we demonstrate how network-wide anomalies can be
detected with RICERCANDO.

RICERCANDO represents a holistic solution for network measure-
ment analysis, yet, its modular design naturally supports framework ex-
pansion and evolution. Augmenting the anomaly detection module with
deep learning (DL) techniques, something that we are already work-
ing on, demonstrates this expandability. Deep learning relies on large
amounts of data in order to tune the models’ numerous parameters.
With the constant stream of new values sampled at high frequency, MBB
traffic measurements are a great candidate for DL-based modelling. DL
methods such as recurrent neural networks (RNNs) and deep Boltzmann
machines (DBMs) have been used to model time series data and recog-

00:00

nise anomalous events related to network security [61]. In our work,
we will concentrate on the autoencoder (AE), a technique that relies on
the dimensionality reduction to compress the representation of the usual
network traffic. When this AE is then fed with new measurements, any
failure to compress and reconstruct the measurements through the AE
indicates an anomaly [62]. Compared to the approaches we have im-
plemented in Section 4.3, the AE-based approach implicitly learns what
the normal data should look like and is thus more likely to identify even
previously unseen and unusual anomalies.

In this we present a number of use cases demonstrating the usability
of the framework for anomaly detection and explanation. Although the
framework was designed primarily for the analysis of data collected in
MONROE testbed, its usability is by no means restricted to a particu-
lar dataset. We have already harnessed RICERCANDO for mining MBB
measurement data gathered by the Slovenian Agency for Telecommuni-
cations (AKOS) with the goal of inferring Internet neutrality violations
in Slovenia. Moreover, although targeting MBB measurements, certain
parts of our framework could also be used in other environments, es-
pecially those characterised by heterogeneous measurements and mea-
surements generated by a large number of probes. For instance, Internet
Service Providers (ISP) usually manage large fixed access networks com-
prised of diverse sub-networks. RICERCANDO’s geo-visualisation and
anomaly detection tools can assist ISPs in rapidly detecting and localis-
ing issues within their network. Similarly, in datacenter environments,
where different performance metrics (e.g. delay, throughput, packet
loss, etc.) need to be tracked, RICERCANDO’s anomaly detection module
could provide support in detecting and explaining performance prob-
lems.

RICERCANDO toolbox has a great potential to assist commercial tel-
cos and government regulators with monitoring and understanding MBB
traffic, and we invite interested parties to download RICERCANDO'®,
adapt it to their needs, enrich it with additional functionalities, and fur-
ther contribute towards improved network measurement data analysis
and understanding.
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