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Abstract

Motivation: Single-cell RNA sequencing allows us to simultaneously profile the transcriptomes of
thousands of cells and to indulge in exploring cell diversity, development and discovery of new
molecular mechanisms. Analysis of scRNA data involves a combination of non-trivial steps from
statistics, data visualization, bioinformatics and machine learning. Training molecular biologists in
single-cell data analysis and empowering them to review and analyze their data can be challeng-
ing, both because of the complexity of the methods and the steep learning curve.

Results: We propose a workshop-style training in single-cell data analytics that relies on an explorative
data analysis toolbox and a hands-on teaching style. The training relies on scOrange, a newly devel-
oped extension of a data mining framework that features workflow design through visual program-
ming and interactive visualizations. Workshops with scOrange can proceed much faster than similar
training methods that rely on computer programming and analysis through scripting in R or Python,
allowing the trainer to cover more ground in the same time-frame. We here review the design princi-
ples of the scOrange toolbox that support such workshops and propose a syllabus for the course. We
also provide examples of data analysis workflows that instructors can use during the training.
Availability and implementation: scOrange is an open-source software. The software, documenta-

tion and an emerging set of educational videos are available at http://singlecell.biolab.si.

Contact: blaz.zupan@fri.uni-lj.si

1 Introduction

Single-cell analytics integrate data engineering, statistics, data visu-
alization and machine learning to uncover complex cell populations,
characterize them through gene expression markers and trace cell
development, among others (Satija et al., 2015; Wolf et al., 2018;
Zheng et al., 2017). The past years have seen intensive research in
computational techniques that address data gathered from single-
cell RNA sequencing. From the viewpoint of a data scientist, single-
cell data are both challenging and exciting due to sheer size. The
data may contain thousands and even millions of cells, with chal-
lenging intrinsic properties such as sparseness and batch effects.
Other intriguing properties include complexity, especially when con-
sidered in combination with other large datasets and available
knowledge bases and ontologies. While the field is evolving, the ana-
lysis pipelines for single-cell data are gaining in complexity and var-
iety of computational methods and approaches.

©The Author(s) 2019. Published by Oxford University Press.

From the molecular biologists’ viewpoint, the rate of change in
single-cell data analysis is bewildering. New publications on techni-
ques for filtering, normalization, clustering, batch effect removal
and cell classification appear almost weekly. Also emerging are dif-
ferent elaborate tools that largely rely on scripting in R or Python
(Butler ez al., 2018; Wolf et al., 2018). The abundance of computa-
tional techniques and their implementations in various program-
ming languages add to the steep learning curve for the users and
create a barrier between biologists and their data.

High-throughput biology is an interdisciplinary field. It was clear
from the onset that data scientists had to grasp the fundamentals of
biology in order to invent and implement analytical methods, but
many biologists were left behind because it was difficult for them to
understand the computational techniques that were required to gain
insight into their data. Many colleges and graduate schools are real-
izing that training modern molecular biologists requires knowledge
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in statistics, mathematical optimization, classical and deep machine
learning and data visualization. This type of training may be diffi-
cult because it requires the students to learn the data analysis con-
cepts while programming in R and Python, mastering collection of
libraries in Bioconductor and writing code for Cytoscape.

Single-cell analytics are gaining in complexity, and it is, there-
fore, a challenge to expose molecular biologists to elementary con-
cepts of data processing and modeling. Ideally, and considering the
busy schedules of successful scientists, we would like to train mo-
lecular biologists in data science in a relatively short time by intro-
ducing a wide scope of concepts from data analytics, in a way that
will enable them to access and explore their own data and to collab-
orate more effectively with computational biologists. The aim of
such exercise is to enable the molecular biologists to communicate
with statisticians and machine learners, become familiar with pos-
sible discoveries through the use of data science, and, ultimately, to
reconnect with their own data.

Data science is a field that is focused on the utility of different
analytical components and their combinations. A typical single-cell
analytics pipeline may start with loading the data and filtering out
some poorly characterized cells and genes. Later on, the pipeline
may continue with clustering, visualization and explorative analysis
to characterize the cell subpopulations or find groups of genes that
are related to the process under investigation (Butler et al., 2018;
Macosko et al., 2015; Satija et al., 2015). A course that teaches cru-
cial concepts in single-cell data science has to offer these compo-
nents to the instructors and trainees in the most accessible form and
enable their combination in any desired way to construct data ana-
lysis workflows. Most importantly, the course has to explore data
visualizations, as these provide the means of communicating the
results of the data analysis. For exploration, data display need to
support interaction (Sacha et al., 2017). For example, choosing a
subpopulation of cells from the t-SNE plot or selecting the cells
from a branch of a hierarchical clustering dendrogram should allow
the user to characterize them through a set of differentially
expressed genes and related Gene Ontology terms. The type of tools
that are suitable for such tasks are workflow management systems,
preferably those that already deal with data science, like SPSS
Modeler, KNIME or RapidMiner, but with an additional require-
ment: interactive visualizations.

Here, we report on scOrange, a recently developed tool that can
support short and intuitive hands-on workshops for single-cell ana-
lytics. Our software tool, scOrange, is an extension of Orange (Curk
et al., 2005; Demsar et al., 2013), a general-purpose data mining
software that features visual programming and interactive analytics.
One of the unique features of Orange is that it was designed by edu-
cators to teach essential concepts in machine learning without the
need for knowledge in programming. With the single-cell extension
scOrange, we can now explain the essentials of single-cell analytics,
maximizing the focus on the concepts while minimizing the need for
technical training. We aimed to design scOrange for:

* short workshops that typically last from 3 to 10 h,

* workshops that cover most major topics in single-cell gene ex-
pression analytics, including data preprocessing, clustering, clus-
ter analysis, differential gene expression analysis and various
means of visualization,

* hands-on teaching, in which students start with analyzing
scRNA-seq data from the first minute of the workshop; the data
analytics methods are presented through solving particular data
analysis problems,

* focusing on biological intuition rather than on mathematical and
algorithmic foundations,

* training in practical applications of data analytics, allowing the
workshop participants to analyze their own data after complet-
ing the course without additional training or elaborate consult-
ation with documentation,

* motivating the audience to explore and evaluate different ana-
lysis workflows and combinations of components of the analysis
pipeline,

* inspiring the audience by showing them how to construct inform-
ative visualizations of data and analyses within minutes of work,

* educating on potential missteps in the data analysis procedures,
such as overfitting,

* emphasizing the need for reproducibility and sharing of data and
results of the analysis.

Below, we report on the elements of scOrange that enable such
training and provide an overview of a recommended one-day single-
cell analysis workshop. The tool and the corresponding seminars are
not meant to replace classical, methodology-oriented training of
data scientists. The teaching and courses that use scOrange should
instead complement the bioinformatics educational spectrum and
introduce non-experts to concepts and possibilities. We have
designed the workshop for an audience that does not specialize in
mathematics and computer science, or for an audience that would
like to explore practical and interactive ways of communicating the
results and approaches of data science to domain experts.

2 Toolbox design

The design of scOrange targets the aims itemized in Section 1 to pro-
vide the tool for teaching the concepts of single-cell data science
within a short hands-on course. The overall design follows that of
Orange (Curk et al., 2005; Demsar and Zupan, 2013), a data mining
toolbox that has been in development in the past two decades, and
adds components that are specific for single-cell gene expression
analysis. Below, we list the most important design choices and dis-
cuss how they address various teaching goals.

2.1 Workflow assembly by visual programming

The tool scOrange provides data analysis components, also called
widgets that are assembled into a data analysis workflow through
visual programming. The components typically encapsulate some
data processing or modeling method; they receive data on the input
and submit the results to the output. Widgets in scOrange are repre-
sented with icons with an input slot on the left side and the output
slot on the right side of the icon (Fig. 1). Users design the workflow
by connecting the inputs and outputs of the widgets, thus establish-
ing the data and information processing pipeline. The system proc-
esses the workflow on-the-fly: as soon as the widget receives the
information it would process it and send out the results. This feature
is particularly important in combination with interactive visualiza-
tions, as we describe below.

The workflows in scOrange are usually constructed in the order
of data processing, starting from reading the data and continuing
with widgets for data visualization, modeling and interpretation. In
this way, users can check the output of each processing step, and
verify that the format and results of the processing comply with
expectations. For instance, in the workflow in Figure 1, a widget
Data Table displays the data read from the input files. Data selected
in t-SNE plot was also sent to another Data Table (1), where the
user could reaffirm that the selected data is indeed sent to the output
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Fig. 1. An example workflow in scOrange consisting of seven widgets: Load
Data widget reads the data from the input files and assembles the data matrix
that is then sent to the Data Table for inspection and to the Filter for selection
of cells or genes. Louvain Clustering finds clusters of cells and sends cluster-
augmented data matrix to t-SNE visualization. In the visualization, the user
can select a subset of cells whose data are then inspected in Data Table (1) or
summarized with descriptive statistics in the Box Plot

of this widget and that clustering information was correctly added
to original data matrices.

Orange decouples the workflow from data visualizations and
from parameters of each of the methods. To reveal these, double-
clicking on a widget opens a window showing parameters of specific
widget any corresponding visualization. Figure 2 shows several such
displays from the workflow in Figure 1. Workflow-content separ-
ation allows the instructor to, on one side, hide the details and focus
on the big picture—the workflow, and on the other side focus on
possibly only one or a few selected components and their visualiza-
tions. Workflow construction and detail hiding support storytelling,
as discussed below.

2.2 Method compartmentalization

Workflows in scOrange are constructed by visual programming,
that is, by selecting and connecting the widgets. Just like with Lego
Bricks, there should be enough building blocks to address most of
the problems from the chosen domain. But how many building
blocks are enough? And, again like in Lego Bricks, do too many of
the highly specialized building blocks overburden the user and re-
place creativity with the need to sip through the plethora of compo-
nents to find just the right one for a specific situation?

In scOrange, and its originating platform Orange, we have mini-
mized the number of widgets, and within compartmentalize specific
methods of data analysis. For instance, scOrange does not include
widgets that implement control statements and elementary operators
on data structures. Workflows are directed acyclic graphs and do
not contain loops. Widgets encapsulate as much functionality as
possible while trying not to co-implement several conceptually dif-
ferent approaches (see Fig. 3). For instance, k-means clustering
widget implements both the clustering procedure and offers an algo-
rithm to find the appropriate number of clusters but does not in-
clude the 2D display of the data to visualize the results of the
clustering. Data visualization and projection is implemented in an-
other widget, like t-SNE, which would support the selection of data
points, but would defer analysis of the selected data instances to
widgets on its output. The output of clustering can be visualized in
t-SNE, but so can the output of cell filtering, gene selection or any
widget that alters the data.

The compartmentalization of functionality in Orange is most
similar to that of workflow-based data analysis systems KNIME and
RapidMiner, but is very different to Taverna (Wolstencroft et al.,
2013). scOrange currently includes only 10 widgets specialized for
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Fig. 2. Contents of selected widgets of the workflow from Figure 1. Load Data
widget loads the data from two separate data files in 10X Genomics matrix
format. The widget for Louvain Clustering displays parameters of this net-
work-based clustering method. In t-SNE visualization, every point refers to a
specific cell. The user has selected a group of cells from the top of the visual-
ization (points outlined in yellow). The phenotype class distribution of
selected cells is displayed in the Box Plot

single-cell data analysis and 10 more widgets that deal with gene ex-
pression analysis. Orange, as a data mining platform, contains about
a 100 widgets that cover most of the standard data visualization and
machine learning operations. Complex workflows in scOrange
would typically include about a dozen widgets. This is quite differ-
ent from Taverna, whose library includes possibly thousands of
components and where workflows are visual alternatives to script-
implemented computer algorithms. A typical Taverna’s workflow
consists of tens, perhaps hundreds of components.

With a rather small number of different components in scOrange
we reduce the steepness of the learning curve. In a typical workshop,
the users would get familiar with about 20 different widgets, and
there is a good chance they would be able to use them after the
course without the need to consult additional documentation. The
challenge here is if these 20 widgets are enough to solve practical
problems from single-cell analytics, and we show that this number
suffices in the section on the course structure.

2.3 Datasets

An essential part of any course in single-cell data analytics is show-
ing the participants how to prepare and load their own data. The
data formats in single-cell are limited in variety; scOrange reads
standard matrix (.mtx), Loom, textual tab-delimited and Excel files,
so that during the workshop instructors can use the data from, say,
Single-Cell (https://portals.broadinstitute.org/single_cell) or 10X
Genomics Dataset (https://support.10xgenomics.com/single-cell-

gene-expression/datasets) portals. Besides, scOrange maintains its
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Fig. 3. Single-Cell Preprocess widget is an example of method compartmen-
talization. The widget includes standard approaches for single-cell data pre-
processing and allows the user to select different preprocessing steps, define
the order in which they are executed and set their parameters. By default, the
choice and the order of the preprocessing steps follows that from Seurat
(Butler et al., 2018). Alternatively, we could break this widget into many differ-
ent ones, one for each preprocessing operation, but that would unnecessarily
increase the number of widgets in the toolbox and complexity of the
workflows

database of single-cell datasets that can be accessed through Single-
Cell Datasets widget.

2.4 Access to knowledge bases

Gene expression data analytics relies on gene name resolution and
access to external knowledge bases such as Gene Ontology
(Ashburner et al., 2000). To convert gene names to standard nota-
tion, scOrange maintains a lookup table from Entrez Molecular
Sequence Database (Agarwala et al., 2016) and uses a Gene Name
Matcher widget to annotate the input data. Widgets for Gene
Ontology analysis and cluster characterization access the knowledge
bases by downloading preprocessed information stored on Orange’s
servers. The access to these datasets is seamless and performed auto-
matically, and does not additionally burden the workshop.

2.5 Interactivity and interactive visualizations
Crucial to the proposed training with scOrange are interactive visu-
alizations. Nearly every widget in our software that visualizes the
data is interactive. Users can select parts of the scatter plots, groups
of bars in the bar charts, subtrees of hierarchical clustering
dendrogram or items in gene ontology trees. Every selection would
trigger the widget to output the data that are associated with the
selected items, and the refreshed widget’s output would tell down-
stream widgets to recompute their analysis. The updates travel from
the onset widget all the way to the last widgets of the workflow.
Interactivity brings workflows to life and turns a seemingly static
data analysis pipeline into a tool for interactive data exploration.
Consider the workflow from Figure 4, where we combined a data
visualization widget, differential expression analysis and gene ontol-
ogy browser into a tool to characterize cell clusters. With any
change of selection of cells in the scatter plot, gene ontology browser
would update its list of common annotations of differentially
expressed genes. The particular combination of widgets forms to-
gether a ‘tool” that was not coded in scOrange, but rather designed
by means of visual programming and workflow assembly.
Interactions with visualizations and information displays are
central to explorative data analysis and visual analytics (Sacha ef al.,

2017), where the user takes an active role in selecting what is excit-
ing and what to explore further. With interactions, the user takes
control over the data analysis, and through a selection of items of
interest implicitly combines one’s prior knowledge with the
observed data. During the training, it is the interactions with visual
displays that make analysis interesting and raise the motivation of
workshop participants.

2.6 Storytelling
According to the review by Bowne-Anderson (2018), the critical
skill of data scientists is communication, rather than experience
with statistical models. An essential part of the communication is to
explain how we got to the results, that is, what was done to the data
to infer the resulting patterns. As nicely stated by Kosara and
MacKinlay (2013), ‘stories also offer an effective means of packag-
ing information and knowledge in a way that is easy for another
person to understand’. Single-cell analytics relies on possibly com-
plex pipelines, and to tell the story often requires observing several
visualizations at once. Our tool scOrange supports storytelling by
explicitly exposing the workflow, and then focusing on essential
details of the workflow by observing a selection of visualizations.
During the workshops with Orange and scOrange, we learned
through the requests of the class that the workflow should always be
visible and exposed, as it provides the backbone of the story. We
also often go back to the workflow to expose this backbone and to
remind ourselves what are the goals of the analysis and what is the
current analysis path that was pursued. Orange supports annotating
of the workflows by adding the notes and arrows. During the past
workshops, we have often seen students using this feature to write a
story about the data processing pipeline and to expose the key com-
ponents and results.

2.7 Reproducibility

Perhaps crucially exposed by the report of loannidis ez al. (2009), re-
peatability of computational analysis has become an important cri-
terion for solid publications in bioinformatics. This report was not
only interesting because of a low rate of reproducibility, where the
goal was to replicate the analysis that led to a single figure from any
of 18 published articles, but the sheer effort to repeat the analysis
procedure. Workflow-based systems should ease the reproduction of
the data analysis by saving every aspect of the analysis, from the
data, the parameters of the methods, to all interactive selections of
the user. Orange, and with it scOrange, conforms to these criteria
and supports saving of the workflow and its entire current state. The
workflow file can then be published online, or shared with col-
leagues for reproduction and further analysis.

When lecturing on single-cell data analytics, reproducibility
issues have to be exposed. Saving of the work, sharing it with
colleagues and being able to restart the analysis precisely at the point
it was last left are the topics that have to be covered even in a short
workshop. With scOrange, this topic is straightforward from the
user’s perspective as it only involves saving and opening of the work-
flows. Ensuring the reproducibility, however, involved substantial
planning, implementation and testing effort at the side of
developers.

2.8 FAIR principles

FAIR guiding principles (Wilkinson et al., 2016) were primarily set for
data management, but, as their authors also intended, can be applied
to analytical data pipelines. Users of scOrange can visually connect the
interoperable components to construct reusable workflows that were
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Fig. 4. Interactivity turns scOrange’s workflows into an explorative data ana-
lysis tool. Shown is a simple workflow that loads the data and displays it in
the t-SNE plot. The plot supports the interactive selection of cells (dots
marked in yellow). The t-SNE widget outputs annotated data matrix with cells
labeled based on the selection. The selection-annotated data are passed to
the widget that outputs a set of differentially expressed genes, whose com-
mon annotation is then displayed in the GO Browser. A list of genes anno-
tated with the selected term (line in blue) is then passed to Gene Name
Matcher that displays the list of genes and provides links to their home page
(not shown here). The user can interact with this setup by changing the selec-
tion of cells, or selecting different GO terms. In both cases, changed selection
triggers the update of the downstream components of the workflow, thus
enabling on-the-fly explorative data analysis

designed with the emphasis on reproducibility and use of standardized,
literature-supported approaches and parameters. scOrange assumes
no programming knowledge and is accessible to a broader audience
than programming language-specific packages. scOrange’s design
hence closely follows FAIR principles.

3 The course structure

Our aim for scOrange was to design an interactive, easy-to-use yet
flexible tool for single-cell gene expression analytics that can address
most of the current data analysis tasks from the field. With that and
the aim for the tool to be particularly useful for educators and stu-
dents, we can in principle compose any coursework that addresses
general topics from the field or focuses on a particular problem.
Here, we lay out an example course structure that was first used for
a 5 h workshop at Janelia Research Campus in Ashburn, Virginia in
February 2018  (https://blog.biolab.si/2018/03/05/single-cell-ana
lytics-workshop-at-hhmi-janelia/). A typical introductory course on
single-cell gene expression analytics with scOrange can include the
following sections:

1. Introduction to workflows, where instructors can use a small
gene expression dataset to explain the mechanics of Orange and

introduce the File widget for loading of the data, Data Table for
spreadsheet display of the data, and widgets Scatter Plot, Box
Plot and Distributions for visualizations of data summary
statistics.

Preparing and working with custom data, and instructions on
saving, loading and sharing of the workflows. We would typical-
ly use external spreadsheet editor (e.g. Excel) and a File widget
to load the data, and then explore the data with widgets from
the introduction to workflows. Time permitting, we would also
visit any of the single-cell data repositories, download the files
and load them with the Load Data widget.

Basic exploration and visualization of single-cell datasets with
principal component analysis and 2D embedding (e.g. t-SNE).
The data at this stage can be accessed through Single Sets
Datasets widget and then either projected on a 2D plane using a
combination of PCA and Scatter Plot widget or embedded into
t-SNE or MDS space. We use this part of the workshop to ex-
plain the difference between data transformation by principal
components and data embedding by t-SNE, and, time allowing;
also comment that t-SNE can display clusters where there are
none in the original data. In a Paint Data widget the workshop
attendees can paint their dataset and check the t-SNE projection,
possibly designing the data that exposes some potential dangers
of overinterpretation of t-SNE displays.

Single-cell data preprocessing, where we address the sparsity of
the data and show how to filter out poorly represented cells or
genes with the Filter widget. We would also discuss the typical
normalization steps as implemented by Single-Cell Preprocess
widget, and observe the effects of filtering and normalization in
the changes of the clustering structure within PCA or t-SNE cell
maps.

Marker genes and cell scoring, where we show how to score the
cells based on the expression of selected marker genes (the
widget Score Cells). We would preferably pick a published data-
set where the effects of scoring would be pronounced, and use
both pre-defined selections of marker genes (the widget Marker
Genes) or a custom list of markers edited in Excel and loaded
with the File widget. Workshop participants often enjoy an
interactive interface (see Fig. 6) that combines gene marker selec-
tion and rendering of the cells with expressed markers, and abil-
ity to easily add new groups of marker genes (widgets File and
Gene Name Matcher).

Cell clustering, where we propose to explore both k-means and
network-based clustering (the widgets k-Means and Louvain
Clustering). This part of the workshop also overviews how to re-
move small clusters through interactive use of the Box Plot
widget. In addition and time permitting, we would also pick a
dataset with a smaller number of cells and perform hierarchical
clustering (widgets Distances and Hierarchical Clustering).
Cluster characterization which involves selecting of the group of
cells and characterizing it through differential gene expression
analysis (Differential Expression widget) and gene set enrich-
ment (e.g. GO Browser). Cluster characterization can also pur-
sue an alternative workflow that uses any of the clustering
method and Cluster Analysis widget that combines differential
gene expression and term/pathway enrichment analysis. Time
permitting, it is also educational to show the enrichment analysis
with a custom set of gene groups defined by participants.

Cell classification with a quick introduction to concepts from
machine learning. We propose to start with a simple gene ex-
pression dataset where cells have already been classified, build a
classification tree (Tree widget) and use it for prediction
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Fig. 5. A workflow to introduce concepts of visual programming and inter-
active data analytics. The upper branch of the workflow is used to display the
data in a scatter plot and then analyze the selected data subset in two widgets
that display summary statistics. The lower branch of the workflow shows hot
to highlight the selection of the data from the Data Table in the Scatter Plot
visualization

(Prediction widget) on a hold-out dataset, likely using a Sample
widget to split the data into training and test set. It is useful to
see how the prediction accuracy varies through samples, leading
to the utility of cross-validation (Test & Score widget), and to
use of more accurate classification techniques like random forest
and logistic regression. This part of the workshop can be dense
and should be only executed during longer workshops.

More advanced topics that are not included above but are sup-
ported in scOrange and can be carried out time permitting are batch
effect removal and discovery of developmental trajectories and infer-
ence of pseudo time. Below, we illustrate selected sections of the
proposed course with example workflows and their brief
descriptions.

3.1 Introduction to visual programming and interactive
analytics

In this 15 min segment, we use the preloaded dataset on bulk gene
expression in yeast (Brown et al., 2000) that is available from the
File widget. We display the data in the Scatter Plot, and then show
how to select the data from the scatter plot and feed it to the Data
Table for viewing it in a spreadsheet or to the Box Plot and
Distributions widgets to report on summary statistics. We also use
this part of the lecture to show how to feed the selected data subset
from the Data Table to the Scatter Plot to expose the selected items
in the visualization (Fig. $).

3.2 Cell maps and marker genes

We can continue the workshop with an exploratory analysis of a
sampled dataset from Zheng et al. (2017) on gene expression in
bone marrow mononuclear cells from a patient with acute myeloid
leukemia and two healthy donors. The sampled dataset comes with
scOrange and is available through Single-Cell Datasets widget. This
dataset exposes clusters that are well related to markers for different

@ Dy
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°
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Fig. 6. Marker genes and cell scoring. The widget Score Cells accepts the data
and a list of marker genes and adds a meta attribute with cell’s score to the
data matrix. The scores correspond to the average expression of the marker
genes. We expose the cells with expressed markers by instructing t-SNE or
any point-based visualization to adjust the size or the color of the data point
to the score. The workflow shown here is a good example of interactivity in
scOrange, as any change in the selection of markers automatically triggers a
change in the scatter plot, highlighting the corresponding cells in accordance
to the selection

blood cell types, and is well suited for the workflow that maps the
cells to 2D display (e.g. +--SNE widget) and marks the cells that ex-
press selected markers (Fig. 6).

3.3 Data filtering and preprocessing

In this section of the workshop, we pay attention to the sparseness
of the single-cell data. Typical single-cell analysis workflow would
remove poorly characterized cells, that is, cells with only a few
expressed genes, and remove genes that have been expressed in only
a few or in most of the cells (Butler et al., 2018). We would also
introduce various preprocessing and data normalization techniques,
and resort to those that are standard in the field (Butler et al., 2018)
(see Fig. 3). The effects of filtering and preprocessing can be
explored by observing the changes in raw data or in the resulting

data visualizations (Fig. 7).

3.4 Cell clustering

Orange supports different types of clustering, including k-means,
hierarchical clustering and network-based approaches. During the
course, we would most often use network-based clustering (Blondel
et al., 2008). All clustering widgets in Orange consider input data
matrix and add a meta variable with cluster identifier to row pro-
files. The output of these widgets is again a data matrix, and thus
amenable for any widget that course participants are at this stage al-
ready familiar with. In an example on Figure 8, we feed the clustered
data to the Box Plot to display the cell cluster frequency and select
only most populated clusters, potentially removing outliers or sim-

ply focusing on prevailing cell groups.

3.5 Cluster characterization, gene set enrichment and
discovery of putative marker genes

Clustering, or any identification and selection of cells, is useful in
combination with methods to characterize cell groups. Groups of

cells can be characterized with a set of differentially expressed genes,
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£ Fig. 8. The workflow for cell clustering. We have used the data from Li et al.
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Fig. 7. Gene and cell filtering in scOrange has a standard functionality,
wrapped into an interactive implementation of the violin plot

and these with a set of common gene terms or pathways. An ex-
ample of such a workflow is shown in Figure 4, and can be exercised
during the workshop using various means of selection of groups of
cells, either by selection in the cell maps, through clustering or selec-
tion of cells by some explicit criteria based on expressions of marker
genes (Select Rows widget, not shown here for brevity).

3.6 Batch effect removal

The observed variation between cells can be influenced by undesired
technical or other confounding factors, referred to as batch effects.
Here, we introduce Batch Effect Removal widget that uses a linear
regression model to decorrelate batch variables from gene expres-
sions. An illustrative example of batch removal can use data on
mouse embryonic stem cells (mESC) that are sampled at different
developmental stages, with their expressions expected to be con-
founded by cell cycle phase (Fig. 9) (Macosko et al., 2015;
Nestorowa et al., 2016). By combining Marker Genes and Score
Cells, we obtain an estimated inclination of each cell toward G2M
and G1/S cell cycle phases and decorrelate their gene expressions
from this expected confounder. A similar regression-based approach
can be used when we expect a cell type-specific response to, say, a
drug treatment, but can only estimate the cell type through marker
genes. The training thus focuses on exploiting data from existing
sources to obtain a correct interpretation of the data.

3.7 Cross-dataset modeling and prediction

Another type of batch effects arises when combining data from dif-
ferent protocols or studies. Here, the workshop can resort to a case
study to classify cells to different cell cycle phases, with training and
test datasets coming from a Fluidigm and Quartz-Seq protocols, re-
spectively (Fig. 10). The gene expression profiles can be aligned with
Dataset alignment widget, that implements canonical correlation
analysis and dynamic time warping to find matching subpopulations
in two or more datasets (Butler ez al., 2018). By using this tailored
preprocessing approach, we are able to predict cell cycle stages

feed these into t-SNE visualization

across different datasets with AUC 0.92, which is significantly
higher than without the preprocessing (AUC 0.62). In this final tu-
torial, the users learn to combine the necessary preprocessing and
alignment, train and also quantitatively evaluate predictive models.

4 Discussion

Above, we have laid out the design choices that make scOrange a
suitable tool for the overview, hands-on workshops on single-cell
data analytics. We also presented a syllabus for the course and pro-
vided examples of the workflows we use during the practical train-
ing sessions.

In the past years, we have been designing courses of this type but
have targeted general data science audience (see https://blog.biolab.
si/?s=workshops), and have only recently started with specialized
courses for single-cell data analytics. We carried out an early assess-
ment of the single-cell analysis workshop at Howard Hughes
Medical Institute’s at Janelia Research Campus in March 2018. The
workshop helped us to identify the weaknesses of the tool and cur-
ricula. The improvements of both were tested in the second work-
shop at the University of Pavia in February 2019, resulting in the
broader scope of covered concepts and smoother execution of the
workshop due to increased computational speed of the tool,
improved interface and better integration with bioinformatics data-
bases. We run surveys at the end of all our data science workshops;
besides high satisfaction of participants, the surveys show that the
biggest gain in the proposed teaching is the wide scope of covered
topics and sparked enthusiasm of participants about data science. In
an informal communication with attendees, we have learned that
covering the broad scope of concepts helps engaged students to dive
deeper through programming in R and Python, returning to Orange
to benefit from interactive data analytics and engaged explorative
communication with data owners or domain experts. We need more
workshops to draw similar conclusions for scOrange. We plan to or-
ganize them regularly at selected institutions and meetings and en-
courage and support educators to adopt the tool and curricula
through sharing of the teaching material that includes workshop
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Effect Removal reports 43% of genes are significantly correlated with the
derived cell cycle phase estimator. After removing this source of variance,
the PCA plot is not confounded by cell cycle phase

notes, educational videos and example workflows on scOrange’s
website.

We accompany the courses with lecture notes that include all the
course workflows and additionally describe the widgets and their
methods. For a § h course, lecture notes would usually contain about
50 pages. We seldom follow these notes strictly throughout the
workshop, as the workshops progress are often also driven by ques-
tions from the audience that we try to answer with a particular com-
bination of widgets not included in the original workshop plan. We
found that the notes are more useful after the course and serve as a
reminder of a covered topic and help workshop participants in
reviewing the concepts covered during the training.

Single-cell data analysis workshops proposed here is practical,
and the training is hands-on. Participants would most often attend
the workshop with their laptops and have scOrange installed before
the course. The instructor would then use Orange and project his
computer screen, and occasionally use the flip-charts or blackboard
to help in explanation. We avoid using PowerPoint slides, as they
would only pose a distraction. The only ‘presentation tool’ we rec-
ommend to use during the course is scOrange. With this, we empha-
size its use in storytelling and focus only on data, analysis and visual
results.

We have been carrying-on the workshops of the type proposed
here for the audiences from 10 to up to a 100 participants. Even for
smaller groups, the lecturer needs a company of an assistant.
Participants would sometime get stuck or would have a question
that would apply to their version of the workflow, and would hence
require individual help. In practice, for a group of every 20 partici-
pants, there should be one additional assistant present in the
classroom.

The scOrange toolbox is a stand-alone application that runs on
all major operating systems. Implemented in Python, it runs locally
and only interfaces with our servers for an exchange of standardized
datasets or knowledge bases. Typically, we would hence consider

MESE OustzSeq Fiter

Correlation strength

1 4 7 10 13 16 19 22 25 28 31 3

Correlstion components

Fig. 10. Workflow that showcases the inference and utility of cell classification
model. Here, we predict cell cycle phase by learning a model on one dataset
and applying it on another one. Gene expressions are made comparable with
Align Datasets. A logistic regression model is trained on the mESC Fluidigm
dataset (Buettner et al., 2015) and the cell cycle phase is predicted for mESC
Quartz-Seq (Sasagawa et al., 2013). The predicted values (colors) almost
exactly match the ground truth (symbols) in the t-SNE plot

just smaller datasets with up to a few ten-thousands of cells, and for
reasons of speed and responsiveness of the interface would often
pick datasets that include ‘only’ few thousands of cells. The pro-
posed course focuses on concepts of data science, and consideration
of much larger datasets—albeit potentially useful—would not be
practical during the training.

5 Conclusion

Workshops, especially short ones, have to motivate and engage the
learners. Especially if designed for end-users who are not experts,
such as data mining for molecular biologists, they have to be prac-
tical and dive into exciting problems from the beginning. One way
of achieving excitement from the audience is through using the right
training tools. In this paper, we propose one. The tool, scOrange,
aims at single-cell gene expression analytics and stands on the
shoulders of Orange, the data science toolbox that has been in
the making since the early 2000s (Demsar and Zupan, 2013). Also,
the type of the teaching—a hands-on workshop—that we advocate
in this paper, has been practiced by our group in the past decade,
but most intensively in the past 3years. Orange was designed by
educators: when constructing any of its components, we kept the
user and the practicing student in mind. Like in Orange, we have
designed widgets in scOrange to serve storytelling, and to provide
explainable insights. Our tool development and instruction methods
follow the motto that data science is about communicating the data
patterns to the end user (Bowne-Anderson, 2018).
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