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Abstract. A popular large-scale gene interaction discovery platform is
the Epistatic Miniarray Profile (E-MAP). E-MAPs benefit from quan-
titative output, which makes it possible to detect subtle interactions.
However, due to the limits of biotechnology, E-MAP studies fail to mea-
sure genetic interactions for up to 40% of gene pairs in an assay. Missing
measurements can be recovered by computational techniques for data
imputation, thus completing the interaction profiles and enabling down-
stream analysis algorithms that could otherwise be sensitive to largely
incomplete data sets. We introduce a new interaction data imputation
method called interaction propagation matrix completion (IP-MC). The
core part of IP-MC is a low-rank (latent) probabilistic matrix completion
approach that considers additional knowledge presented through a gene
network. IP-MC assumes that interactions are transitive, such that latent
gene interaction profiles depend on the profiles of their direct neighbors
in a given gene network. As the IP-MC inference algorithm progresses,
the latent interaction profiles propagate through the branches of the net-
work. In a study with three different E-MAP data assays and the consid-
ered protein-protein interaction and Gene Ontology similarity networks,
IP-MC significantly surpassed existing alternative techniques. Inclusion
of information from gene networks also allows IP-MC to predict interac-
tions for genes that were not included in original E-MAP assays, a task
that could not be considered by current imputation approaches.

Keywords: genetic interaction, missing value imputation, epistatic
miniarray profile, matrix completion, interaction propagation.

1 Introduction

The epistatic miniarray profile (E-MAP) technology [1–4] is based on a synthetic
genetic array (SGA) approach [5,6] and generates quantitative measures of both
positive and negative genetic interactions (GIs) between gene pairs. E-MAP
was developed to study the phenomenon of epistasis, wherein the presence of
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one mutation modulates the effect of another mutation. The power of epistasis
analysis is greatly enhanced by quantitative GI scores [2]. E-MAP has provided
high-throughput measurements of hundreds of thousands of GIs in yeast [1,4,7]
and has been shown to significantly improve gene function prediction [7]. How-
ever, E-MAP data suffer from a large number of missing values, which can be
as high as ∼40% for a given assay (see also Table 1). Missing values correspond
to pairs of genes for which the strength of the interaction could not be mea-
sured during the experimental procedure or that were subsequently removed
due to low reliability. A high proportion of missing values can adversely affect
analysis algorithms or even prevent their use. For instance, missing data might
introduce instability in clustering results [8] or bias the inference of prediction
models [9]. Accurate imputation of quantitative GIs is therefore an appealing
option to improve downstream data analysis and correspondence between ge-
netic and functional similarity [7, 10–13]. Imputed quantitative GIs can be a
powerful source for understanding both the functions of individual genes and
the relationships between pathways in the cell.

The missing value problem in E-MAPs resembles that from gene expression
data, where imputation has been well studied [9, 14, 15]. The objective in both
tasks is to estimate the values of missing entries given the incomplete data
matrix. Both types of data may exhibit a correlation between gene or mutant
profiles, which is indicative of co-regulation in the case of gene expression data
and pathway membership in the case of E-MAP data [16]. E-MAP data sets
are therefore often analyzed with tools originally developed for gene expression
data analysis [17]. However, there are important differences between E-MAP
and gene expression data that limit the direct application of gene expression
imputation techniques to E-MAPs [16]. E-MAP data are pairwise, symmetric
and have substantially different dimensionality than gene expression data sets.
They contain considerably more missing values than gene expression data sets
(the latter have up to a 5% missing data rate, see [9, 18]). These differences,
coupled with the biological significance of E-MAP studies, have spurred the
development of specialized computational techniques for recovering missing data
in E-MAP-like data sets [16].

In this paper, we propose IP-MC (“interaction propagation matrix comple-
tion”), a hybrid and knowledge assisted method for imputing missing values in
E-MAP-like data sets. IP-MC builds upon two concepts, matrix completion and
propagation of interaction. Matrix completion uses information on global corre-
lation between entries in the E-MAP score matrix. The interaction propagation
serves to exploit the local similarity of genes in a gene network. The use of back-
ground knowledge in the form of gene networks gives IP-MC the potential to
improve imputation accuracy beyond purely data-driven approaches. This could
be especially important for data sets with a small number of genes and a high
missing data rate, such as E-MAPs. In the following, we derive a mathematical
formulation of the proposed approach and, in a comparative study that includes
several state-of-the-art imputation techniques, demonstrate its accuracy across
several E-MAP data sets.
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2 Related Work

Imputation algorithms for gene expression data sets are reviewed in Liew et
al. (2011) [9], who categorized them into four classes based on how they uti-
lize or combine local and global information from within the data (local, global
and hybrid algorithms) and their use of domain knowledge during imputation
(knowledge-assisted algorithms). Local methods, such as k-nearest neighbors
(KNNimpute) [14], local least squares (LLS) [19] and adaptive least squares
(LSimpute) [18], rely on the local similarity of genes to recover the missing val-
ues. Global methods are based on matrix decompositions, such as the singular
value decomposition (e.g. SVDimpute [14]), the singular value thresholding al-
gorithm for matrix completion (SVT) [20] and Bayesian principal component
analysis (BPCA) [21]. A hybrid imputation approach for gene expression data
by Jörnsten et al. (2005) [22] estimates missing values by combining estimates
from three local and two global imputation methods.

Only a handful of missing data imputation algorithms directly address E-
MAP-like data sets. Ulitsky et al. (2009) [23] experimented with a variety of
genomic features, such as the existence of physical interaction or co-expression
between gene pairs, that were used as input to a classification algorithm. The
IP-MC differs from this approach as it directly uses the matrix of measured GI
scores and does not require data-specific feature engineering. Ryan et al. (2010,
2011) [16, 24] considered four general strategies for imputing missing values –
three local methods and one global method – and adapted these strategies to
address E-MAPs. They modified unweighted and weighted k-nearest neighbors
imputation methods (uKNN and wNN, respectively). They also adapted LLS
and BPCA algorithms to handle symmetric data. We refer the reader to Ryan et
al. (2010) [16] for details on the algorithm modifications. We compare their im-
putation approaches with the IP-MC (see Sec. 5). Pan et al. (2011) [25] proposed
an ensemble approach to combine the outputs of two global and four local im-
putation methods based on diversity of estimates of individual algorithms. In
this paper we focus on the development of a single algorithm that if necessary
could be used in an ensemble, and therefore compare it only with ensemble-free
algorithms.

Another avenue of research focuses on predicting qualitative, i.e. binary, in-
stead of quantitative interactions. Qualitative predictions estimate the presence
or absence of certain types of interaction rather than their strength [26–29]. A
major distinction between these techniques and the method proposed in the pa-
per is that we aim at accurate imputation of quantitative genetic interactions
using the scale of GI scores. Individual GI may by itself already provide valu-
able biological insight, as each interaction provides evidence for a functional
relationship between a gene pair. Prediction of synthetic sick and lethal interac-
tion types in S. cerevisiae was pioneered by Wong et al. (2004) [26], who applied
probabilistic decision trees to diverse genomic data. Wong et al. [26] introduced
2-hop features for capturing the relationship between a gene pair and a third
gene. They showed that, for example, if protein g1 physically interacts with pro-
tein g2, and gene g3 is synthetic lethal with the encoding gene of g2, then this
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increases the likelihood of a synthetic lethal interaction between the encoding
gene of g1 and gene g3. Two-hop features were shown to be crucial when pre-
dicting GIs [11, 23, 26] and are the rationale behind our concept of interaction
propagation.

3 Methods

We first introduce a probabilistic model of matrix completion for missing value
imputation in E-MAP-like data sets. The model predicts scores for missing in-
teraction measurements by employing only the E-MAP score matrix. We then
extend it with the notion of interaction propagation. The resulting method, IP-
MC, is able to exploit the transitivity of interactions, that is, the relationship
between a gene pair and a third gene (see Sec. 2). IP-MC predicts missing values
from both E-MAP data and the associated gene network that encodes domain
knowledge. Any type of knowledge that can be expressed in the form of a net-
work can be passed to IP-MC. In this paper, we use the Gene Ontology [30]
semantic similarity network and protein-protein interaction network.

3.1 Problem Definition and Preliminaries

In the E-MAP study we have a set of genes (g1, g2, . . . , gn). The genetic interac-
tion between a pair of genes is scored according to the fitness of the corresponding
double mutant and reported through an S-score that reflects the magnitude and
sign of the observed GI [2]. Scored GIs are reported in the form of a partially
observed matrix G ∈ Rn×n. In this matrix, Gi,j contains a GI measurement be-
tween gi and gj . Here, G is symmetric, Gi,j = Gj,i. Without loss of generality,
we map GIs to the [0,1]-interval by normalizing G (step 1 in Fig. 2). Following

the imputation, we re-scale the completed (imputed) matrix ̂G to the original
scale of S-scores (step 5 in Fig. 2).

In a gene network every gene gi has a set of Ngi neighbors, and Pi,j denotes
the value of influence that gene gj ∈ Ngi has on gi. These values are given in
matrix P ∈ R

n×n. We normalize each row of P such that
∑n

j=1 Pi,j = 1. A
non-zero entry Pi,j denotes dependence of the gi-th latent feature vector to the
gj-th latent feature vector. Using this idea, latent features of genes that are
indirectly connected in the network become dependent after a certain number
of algorithm steps, the number of steps being determined by the path distance
between genes. Hence, information about gene latent representation propagates
through the network.

The model inference task is defined as follows: given a pair of genes, gi and
gj, for which Gi,j (and Gj,i) is unknown, predict the quantitative GI between
gi and gj using G and P. We employ a probabilistic view of matrix completion
to learn gene latent feature vectors. Let F ∈ R

k×n and H ∈ R
k×n be gene latent

feature matrices with column vectors Fi and Hj representing k-dimensional
gene-specific latent feature vectors of gi and gj , respectively. The goal is to learn
these latent feature matrices and utilize them for missing value imputation in
E-MAP-like data sets.
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3.2 Matrix Completion Model

We start our derivation by formulating basic matrix completion approach for
recovering missing values in G without considering the additional gene network.
Throughout the paper, this approach is denoted by MC. In order to learn low-
dimensional gene latent feature matrices F and H, we factorize observed values
in G. The conditional probability of observed GIs is defined as:

p(G|F,H, σ2
G) =

n∏

i=1

n∏

j=1

N (Gi,j |g(FT
i Hj), σ

2
G)I

G
i,j , (1)

where N (x|μ, σ2) is a normal distribution with mean μ and variance σ2 and
IGi,j is an indicator function that is equal to 1 if a GI score between gi and gj
is available and is 0 otherwise. Notice that Eq. (1) deals only with observed en-
tries in matrix G. Thus, predictions are not biased by setting missing entries in
G to some fixed value, which is otherwise common in matrix factorization algo-
rithms. The function g is a logistic function, g(x) = 1/(1+e−0.5x), which bounds
the range of g(FT

i Hj) within interval (0, 1). We assume a zero-mean Gaus-
sian prior for gene latent feature vectors in F as p(F|σ2

F) =
∏n

i=1 N (Fi|0, σ2
FI)

and similarly, the prior probability distribution for H is given by p(H|σ2
H) =

∏n
i=1 N (Hi|0, σ2

HI).
Through Bayesian inference we obtain the following equation for the log-

posterior probability of latent feature matrices F and H given the interaction
measurements in G:

ln p(F,H|G, σ2
G, σ2

F, σ
2
H) = − 1

2σ2
G

n∑

i=1

n∑

j=1

IGi,j(Gi,j − g(FT
i Hj))

2 − 1

2σ2
F

n∑

i=1

FT
i Fi

− 1

2σ2
H

n∑

j=1

HT
j Hj − 1

2
(

n∑

i=1

n∑

j=1

IGi,j) ln σ
2
G − 1

2
nk(ln σ2

F + ln σ2
H) + C. (2)

We select the factorized model by finding the maximum a posteriori (MAP) es-
timate. This is equivalent to solving a minimization problem with the objective:

L(G,F,H) =
1

2

n∑

i=1

n∑

j=1

IGi,j(Gi,j − g(FT
i Hj))

2 +
λF

2

N∑

i=1

FT
i Fi +

λH

2

N∑

j=1

HT
j Hj , (3)

where λF = σ2
G/σ2

F and λH = σ2
G/σ2

H. Interactions in G are normalized
before numerical optimization such that they are between 0 and 1 because their
estimates g(FTH) are also bounded. We keep the observation noise variance σ2

G

and prior variances σ2
F and σ2

H fixed and use a gradient descent algorithm to
find the local minimum of L(G,F,H) to infer gene latent feature matrices.

3.3 Interaction Propagation Matrix Completion Model

Interaction propagation matrix completion (IP-MC) extends the basic matrix
completion model MC by borrowing latent feature information from neighbor-
ing genes in the network P. A graphical example of IP-MC is shown in Fig. 1.
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The biological motivation for the propagation of interactions stems from the
transitive relationship between a gene pair and a third gene (see Sec. 2) and in-
dicates that the behavior of a gene is affected by its direct and indirect neighbors
in the underlying gene network P. In other words, the latent feature vector of
gene g, Fg, is in each iteration dependent on the latent feature vectors of its di-

rect neighbors h ∈ Ng in P. The influence is formulated as ̂Fg =
∑

h∈Ng
Pg,hFh,

where ̂Fg is the estimated latent feature vector of g given feature vectors of its
direct neighbors. Thus, the latent feature vectors in F of genes that are indi-
rectly connected in network P are dependent and thus, information about their
latent representation propagates as the algorithm progresses according to the
connectivity of network P.

Fig. 1. An example application of the interaction propagation matrix com-
pletion algorithm (IP-MC). A hypothetical E-MAP data set with five genes
(g1, . . . , g5) is given. Their measured GI profiles are listed next to corresponding nodes
in gene network P (left) and are shown in the sparse and symmetric matrix G (right).
Different shades of grey quantify interaction strength, while white matrix entries in G
denote missing values. Matrices F and H are gene latent feature matrices. Gene latent
feature vector Fgi depends in each iteration of IP-MC on the latent feature vectors
of gi’s direct neighbors in P. For instance, the latent vector of gene g1 in F depends
in the first iteration of the IP-MC update (in red) only on its direct neighbors, the
latent vectors of g4 and g5 (Fg4 and Fg5 are shown on input edges of g1), whose level
of influence is determined by P1,4 and P1,5, respectively. In the second iteration, the
update of Fg1 (in green) also depends indirectly on the latent vector of g2, Fg2 . Thus,
the influence of gene latent feature vectors propagates in P. Gene latent feature matrix
H is not influenced by the gene neighborhood in P.

Notice that considering gene network P does not change the conditional
probability of observed measurements (Eq. (1)). It only affects gene latent fea-
ture vectors in F. We describe them with two factors: the zero-mean Gaussian
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prior to avoid overfitting and the conditional distribution of gene latent feature
vectors given the latent feature vectors of their direct neighbors:

p(F|P, σ2
F, σ

2
P) ∝

n∏

i=1

N (Fi|0, σ2
FI)×

n∏

i=1

N (Fi|
∑

j∈Ni

Pi,jFj , σ
2
PI). (4)

Notice that such formulation of gene latent matrix F keeps gene feature vec-
tors Fi both small and close to the latent feature vectors of their direct neighbors.
Much like the previous section, we get the following equation through Bayesian
inference for the posterior probability of gene latent feature matrices F and H
given observed GI scores G and gene network P:

p(F,H|G,P, σ2
G, σ2

P, σ
2
F, σ

2
H) ∝

n∏

i=1

n∏

j=1

N (Gi,j |g(FT
i Hj), σ

2
G)I

G
i,j

×
n∏

i=1

N (Fi|
∑

j∈Ni

Pi,jFj , σ
2
P I)×

n∏

i=1

N (Fi|0, σ2
FI) ×

n∏

j=1

N (Hj |0, σ2
HI). (5)

We then compute the log-posterior probability to obtain an equation similar to
Eq. (2) but with an additional term due to the interaction propagation concept.
To maximize conditional posterior probability over gene latent features, we fix
the prior and observation noise variance and employ gradient descent on F and
H. In particular, we minimize the objective function similar to Eq. (3) that
has an additional term to account for the conditional probability of gene latent
features given their neighborhoods in gene network P. The complete algorithm
of IP-MC is presented in Fig. 2. In each iteration, gene latent feature matrices F
andH are updated based on the latent feature vectors from the previous iteration
and network neighborhood in P. Successive updates of Fi and Hj converge to
a maximum a posteriori (MAP) estimate of the posterior probability in Eq. (5).

4 Experimental Setup

In the experiments we consider an existing incomplete E-MAP matrix and ar-
tificially introduce an additional 1% of missing values for a set of arbitrarily
selected gene pairs [16, 25]. These gene pairs and their data constitute a test
set on which we evaluate the performance of imputation algorithms. Because of
E-MAP symmetry, for a given test gene pair and its corresponding entry Gi,j ,
we also hide the value of Gj,i. We repeat this process 30 times and report on
the averaged imputation performance.

Notice that the standard performance evaluation procedure of missing value
imputation methods for gene expression data is not directly applicable to E-
MAPs for the several reasons discussed in [16]. This approach constructs a
complete gene expression data matrix by removing genes with missing data
and then artificially introduces missing values for evaluation. In gene expression
data, a substantially lower fraction of data is missing than in E-MAPs (Table 1)
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Input: Sparse matrix G ∈ R
n×n containing S-scores of measured E-MAP interactions,

gene network P ∈ R
n×n and parameters λF = λH, λP, rank k and learning rate α.

Output: Completed E-MAP matrix ̂G.

1. Normalize G̃ = (G − mini,j Gi,j)/maxi,j Gi,j .
2. Normalize each row of P such that

∑n
j=1 Pi,j = 1.

3. Sample F ∼ U [0, 1]k×n and H ∼ U [0, 1]k×n.
4. Repeat until convergence:

• For i, j ∈ 1, 2, . . . , n :

∂L
∂Fi

=

n
∑

j=1

IG̃
i,jHjg

′(FT
i Hj)(g(F

T
i Hj) − G̃i,j) + λFFi +

+λP(Fi −
∑

j∈Ni

Pi,jFj) − λP

∑

{j|i∈Nj}
Pj,i(Fj −

∑

l∈Nj

Pj,lFl),

∂L
∂Hj

=

n
∑

i=1

I
G̃
i,jFig

′
(F

T
i Hj)(g(F

T
i Hj) − G̃i,j) + λHHj .

• Set Fi ← Fi − α ∂L
∂Fi

for i = 1, 2, . . . , n.

• Set Hj ← Hj − α ∂L
∂Hj

for j = 1, 2, . . . , n.

5. Compute ̂G = g(FTH) · maxi,j Gi,j + mini,j Gi,j . Impute missing entry (i, j) as

(̂Gi,j + ̂Gj,i)/2.

Fig. 2. Interaction propagation matrix completion (IP-MC) algorithm. We
observed that parameter values λH = λF = 0.01 and α = 0.1 gave accurate results
across a number of different data sets. Parameter λP, which controls the influence of
gene network P on gene latent feature vectors Fi, depended on data set complexity [15].
In data sets with higher complexity, we used a larger λP (λP = 1).

and removing a small number of genes and experimental conditions does not
significantly reduce the size of the data set.

In our experiments we select the number of latent dimensions k and regu-
larization parameters λF and λP of IP-MC with the following procedure: For
each data set and before the performance evaluation, we leave out 1% of ran-
domly selected known values and attempt to impute them with varying values
of parameters in a grid search fashion. Parameter values that result in the best
estimation of the left-out values are then used in all experiments involving the
data set. Notice that the left-out values are determined before the performance
evaluation and are therefore not included in the test data set.

We consider two measures of imputation accuracy. These are the Pearson cor-
relation (CC) between the imputed and the true values, and the normalized root
mean squared error (NRMSE) [21] given as NRMSE =

√

E((ŷ − y)2)/Var(y),
where y and ŷ denote vectors of true and imputed values, respectively. More
accurate imputations give a higher correlation score and a lower NRMSE.

To test if the differences in performance between imputation methods are
significant, we use the Wilcoxon signed-rank test, a non-parametric equivalent
of a paired t-test. Its advantage is that it does not require a normal distribution
or homogeneity of variance, but it has less statistical power, so there is the risk
that some differences are not recognized as significant.
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5 Results and Discussion

We considered three E-MAP data sets and compared IP-MC to five state-of-
the-art methods for imputing missing values in E-MAP-like data sets [16]. We
set the parameters of these methods to values as proposed in [16] (wNN, LLS,
BPCA) or optimized the parameter selection through a grid search (SVT, MC,
IP-MC). The evaluated data sets are from the budding yeast S. cerevisiae; they
differ in their size, the subset of genes that are studied and the proportion of
missing values (Table 1). We used GI S-scores reported in original publications:

• Chromosome Biology [7]: This is the largest of the E-MAPs, encompassing
interactions between 743 genes involved in various aspects of chromosome
biology, such as chromatid segregation, DNA replication and transcriptional
regulation.

• RNA processing (RNA) [4]: It focuses on the relationships between and
within RNA processing pathways involving 552 mutations, 166 of which are
hypomorphic alleles of essential genes.

• The Early Secretory Pathway (ESP) [1]: It generates genetic interaction
maps of genes acting in the yeast early secretory pathway to identify pathway
organization and components of physical complexes.

Table 1. Overview of the E-MAPs considered

Data set Genes Missing Measured
Interactions Interactions

Chromosome Biology [7] 743 34.0% 187,000
Early Secretory Pathway [1] 424 7.5% 83,000
RNA [4] 552 29.6% 107,000

IP-MC considered two different data sources for gene network P. The first
network was constructed from Gene Ontology [30] (GO) annotation data as a
weighted network of genes included in the E-MAP study in which edge weights
corresponded to the number of shared GO terms between connected genes, ex-
cluding annotations inferred from GI studies (i.e. those with the igi evidence
code). The second network represented physical interaction data from BioGRID
3.2 [31]. The physical interaction network was a binary network in which two
genes were connected if their gene products physically interact. Both networks
were normalized as described in Sec. 3.1. Depending on a network, we denote
their corresponding IP-MC models by IP-MC-GO and IP-MC-PPI, respectively.

5.1 Imputation Performance

Table 2 shows the CC and NRMSE scores of imputation algorithms along with
the baseline method of filling-in with zeros. IP-MC-PPI and IP-MC-GO demon-
strated the best accuracy on all considered data sets. We compared their scores
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with the performance of the second-best method (i.e. LLS on Chromosome Bi-
ology data set, SVT on ESP data set and MC on RNA data set) and found that
improvements were significant in all data sets.

We did not observe any apparent connection between the proportion of miss-
ing values in a data set and the performance of any of the imputation methods.
The performance was better on smaller ESP and RNA data sets, although dif-
ferences were small and further investigation appears to be worthwhile.

The baseline method of filling-in with zeros had the worst performance for
all data sets. While this approach seems näıve, it is justified by the expecta-
tion that most genes do not interact. We observed that BPCA failed to match
the performance of weighted neighbor-based and local least squares methods,
wNN and LLS, respectively, despite BPCA being an improvement of the KNN
algorithm. Both local imputation methods, wNN and LLS, demonstrated good
performance across all three data sets. The good performance of neighbor-based
methods on larger data sets could be explained by a larger number of neighbors
to choose from when imputing missing values, which resulted in more reliable
missing value estimates.

Global methods, BPCA, SVT and MC, performed well on the ESP data set
but poorly on the much larger Chromosome Biology data set. These methods
assume the existence of a global covariance structure among all genes in the
E-MAP score matrix. When this assumption is not appropriate, i.e. when the
genes exhibit dominant local similarity structures, their imputation becomes
less accurate. Notice that the comparable performance of SVT and MC across
data sets was expected. Both methods solve related optimization problems and
operate under the assumption that the underlying matrix of E-MAP scores is
low-rank.

The superior performance of IP-MC models over other imputation methods
can be explained by their ability to include circumstantial evidence. As a hybrid
imputation approach, IP-MC can benefit from both global information present
in E-MAP data and local similarity structure between genes. One could vary
the level of influence of global and local imputation aspects on the inferred IP-
MC model through the λP parameter, where a higher value of λP indicates
more emphasis on locality. In this way, our approach can adequately address the
data of varying underlying complexity [15], where the complexity denotes the
difficulty with which the data can be mapped to a lower dimensional subspace.
Brock et al. (2008) [15] devised an entropy-based imputation algorithm selection
scheme based on their observation that global imputation methods performed
better on gene expression data with lower complexity and that local methods
performed better on data with higher complexity. Thus, their selection scheme
could be adapted to work with E-MAP-like data sets and be used to set λP in
an informed way, which is left for our future work. In additional experiments
(results not shown), we found that the performance of IP-MC is robust for a
broad range of λP parameter values.
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Table 2. Accuracy as measured by the Pearson correlation coefficient (CC)
and normalized root mean squared error (NRMSE) across three E-MAP
data sets and eight imputation methods. MC denotes the matrix completion
model (Sec. 3.2). The IP-MC-GO and IP-MC-PPI models are interaction propagation
matrix completion models (Sec. 3.3) that utilize annotation and physical interaction
data, respectively. For descriptions of other methods see Related Work. Highlighted
results are significantly better than the best non-IP-MC method according to the
Wilcoxon signed-rank test at 0.05 significance level.

Approach Chromosome Biology ESP RNA

CC NRMSE CC NRMSE CC NRMSE

Filling with zeros 0.000 1.021 0.000 1.011 0.000 1.000
BPCA (k = 300) 0.539 0.834 0.619 0.796 0.589 0.804
wNN (k = 50) 0.657 0.744 0.625 0.776 0.626 0.787
LLS (k = 20) 0.678 0.736 0.626 0.764 0.626 0.776

SVT (k = 40) 0.631 0.753 0.672 0.719 0.649 0.765
MC (k = 40) 0.641 0.742 0.653 0.722 0.651 0.760

IP-MC-GO (k = 60) 0.691 0.693 0.732 0.648 0.727 0.641
IP-MC-PPI (k = 60) 0.722 0.668 0.742 0.667 0.701 0.652

5.2 Missing Value Abundance and Distribution

Ulitsky et al. (2009) [23] described three different scenarios of missing values in
E-MAP experiments (Fig. 3). The simplest and the most studied scenario is the
Random model, for which we assume that missing measurements are generated
independently and uniformly by some random process. The Submatrix model
corresponds to the case when all interactions between a subset of genes (e.g. es-
sential genes) are missing. The Cross model arises when all interactions between
two disjoint subsets of genes are missing. This model concurs with the situation
when two E-MAP data sets that share a subset of genes are combined into a
single larger data set. We identify another missing value configuration, which we
call the Prediction scenario (Fig. 4d). It occurs when GI profiles of a subset of
genes are completely missing. Learning in such a setting is substantially harder
as these genes do not have any associated measurements. In the previous sec-
tion, we compared the imputation methods on the Random configuration, and
study other configurations in this section. This time we were interested in the
effect these configurations have on IP-MC, and we compared the algorithm to
its variant MC that does not use additional knowledge (e.g. the gene network).

Fig. 4 reports the predictive performance of our matrix completion approach
obtained by varying the fraction of missing values in the four missing data sce-
narios from Fig. 3. For x = 5, 10, 20, . . . , 90 we hid x% of E-MAP measurements
in ESP data and inferred prediction models. Our results are reasonably accurate
(CC > 0.4) when up to 60% of the E-MAP values were hidden for the Ran-
dom and Submatrix model. Notice that when we hid 60% of the ESP E-MAP
measurements, the E-MAP scores were present in less than 40% of the matrix
because the original ESP data set already had ∼8% missing values (Table 1).
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Fig. 3. The four configurations producing missing values in E-MAP data.
In Random configuration, a random subset of GIs is hidden. In Submatrix or Cross
configurations all interactions between a random subset of genes or two random disjoint
subsets of genes, respectively, are hidden. In the Prediction scenario, complete profiles
of GIs of a random subset of genes are removed.

When more than 80% of the data were removed, the three considered models
still achieved higher accuracy (CC ≈ 0.2) than filling-in with zeros. As expected,
predictions were more accurate for the Random model than for the Submatrix
model for almost all fractions of hidden data (cf. Fig. 4a and Fig. 4b). However,
the difference in performance between the Random and the Submatrix models
tended to be small when less than 30% or more than 70% of the measurements
were hidden. We observed that inclusion of additional genomic data is more use-
ful in structured missing value scenarios, i.e. the Submatrix and Cross models
(Fig. 4b–4c).

Imputation accuracy improved (Fig. 4) when E-MAP data were combined
with gene annotation (IP-MC-GO) or protein-protein interaction (IP-MC-PPI)
networks. These results are not surprising as several studies [6,7,32] showed that
if two proteins act together to carry out a common function, deletions of the two
encoding genes have similar GI profiles and that gene annotations from the GO
and synthetic lethality are correlated, with 12 and 27% of genetic interactions
having an identical or similar GO annotation, respectively [6]. Thus, our IP-MC-
GO and IP-MC-PPI models could exploit the strong links between functionally
similar genes, physically interacting proteins and GIs. The performance of our
two integrated models indicates the importance of combining interaction and
functional networks for predicting missing values in E-MAP data sets.

Imputation accuracy deteriorated when complete profiles of GIs were removed
and IP-MC could only utilize circumstantial evidence (Fig. 4d). This suggests
that measured gene pairs in the E-MAP are the best source of information for
predicting missing pairs. However, as the percentage of missing GIs increases,
the inclusion of other genomic data is more helpful. With the exception of the
Prediction model, for which we observed the opposite behavior, the performance
difference between MC and IP-MC was small (∼10%) as long as <50% of the
data were removed, but rose to above 20% when ≥60% of the data were removed
(Fig. 4).
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(a) Random scenario
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(b) Submatrix scenario
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(c) Cross scenario
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(d) Prediction scenario

Fig. 4. Performance of imputation methods (Pearson correlation coefficient,
CC) proposed in this paper for different fractions of missing values and
scenarios of missing value distribution. Refer to the main text and Fig. 3 for
descriptions of the missing value scenarios. MC denotes the matrix completion approach
(Sec. 3.2). The integrated approaches are represented by IP-MC-GO and IP-MC-PPI
(Sec. 3.3). Performance was assessed for the ESP E-MAP data set because it contains
the least missing values. The ’Cross’ configuration is not applicable when more than
50% of values are missing.

6 Conclusion

We have proposed a new missing value imputation method IP-MC that targets
gene interaction data sets. The approach is unique in combining gene interaction
and network data through inference of a single probabilistic model. Experiments
on epistatic MAP interaction data sets show that the inclusion of additional
knowledge is crucial and helps IP-MC to perform better than a number of state-
of-the-art algorithms we have included in our study. The results are encour-
aging, have a potentially high practical value, and were intuitively expected.
Gene interaction studies use double-mutant phenotypes to uncover functional
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dependencies, and additional knowledge that could provide any information on
relations between genes should help. Driven by this intuition, the principal nov-
elty of the paper is thus a new knowledge-based missing value imputation ap-
proach and the demonstration of its successful application on E-MAP data sets.
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